[1].Metagenomic Analysis of Mangshan Pit Viper (Protobothrops mangshanensis) Gut Microbiota Reveals Differences among Wild and Captive Individuals Linked to Hibernating Behaviors[J].Asian Herpetological Research,2022,13(4):251-268.[doi:10.16373/j.cnki.ahr.220003]
 Bing ZHANG,Xiangyun DING,Jianping JIANG,et al.Metagenomic Analysis of Mangshan Pit Viper (Protobothrops mangshanensis) Gut Microbiota Reveals Differences among Wild and Captive Individuals Linked to Hibernating Behaviors[J].Asian Herpetological Research(AHR),2022,13(4):251-268.[doi:10.16373/j.cnki.ahr.220003]

Metagenomic Analysis of Mangshan Pit Viper (Protobothrops mangshanensis) Gut Microbiota Reveals Differences among Wild and Captive Individuals Linked to Hibernating Behaviors()

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]



Metagenomic Analysis of Mangshan Pit Viper (Protobothrops mangshanensis) Gut Microbiota Reveals Differences among Wild and Captive Individuals Linked to Hibernating Behaviors
Bing ZHANG12 Xiangyun DING1 Jianping JIANG3 Linhai LI4 and Daode YANG1*
1 Institute of Wildlife Conservation, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
2 Qilu Normal University, Jinan 250200, Shandong, China
3 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
4 Department for Wildlife and Forest Plants Protection, National Forestry and Grassland Administration, Beijing 100714, China
composition and diversity gene functions and pathways gut microbiota metagenomics Protobothrops mangshanensis
Gut microbiota play important roles in the immunity, digestion, and energy metabolism of their reptile hosts. Mangshan pit viper (Protobothrops mangshanensis) is a critically endangered snake species that is a Class I national protected species in China. Little is known regarding the relationship between P. mangshanensis and their gut microbial communities. In this study, the gut microbiota of wild P. mangshanensis individuals, artificially hibernating captive individuals, and non-hibernating captive individuals were compared across nine samples. Comparative shotgun metagenomic analysis was used to investigate the taxonomic composition, diversity, and function of P. mangshanensis gut microbial communities and assess whether their gut microbiomes were affected by their living environments and captivity conditions. The dominant phyla within P. mangshanensis gut microbial communities were Proteobacteria (65.55%), Bacteroidetes (15.97%), and Firmicutes (8.11%). Enriched functional pathways within the gut microbiota included metabolism (54.9%), environmental information processing (9.67%), and genetic information processing (9.37%). Wild snake gut communities exhibited higher microbial diversity than the other two groups. The gut microbiomes of wild and hibernating captive snakes may be more reflective of healthy intestinal homeostasis than that in non-hibernating snakes. Specifically, non-hibernating snakes exhibited increased levels of potentially pathogenic populations and functional specialization within gut microbial communities. Thus, different living environments and captivity methods may correspond to major shifts in microbiota composition, diversity, and function within P. mangshanensis. This study provides important insights to help guide the conservation of P. mangshanensis, while also carrying broad implications for our understanding of the effects of living environments and non-hibernating captivity conditions on the gut microbiota of snakes.


Ahasan M. S., Waltzek T. B., Huerlimann R., Ariel E. 2018. Comparative analysis of gut bacterial communities of green turtles (Chelonia mydas) pre-hospitalization and post-rehabilitation by high-throughput sequencing of bacterial 16S rRNA gene. Microbiol Res, 207: 91–99
Anderson M. J. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecol, 26: 32–46
Asnicar F., Weingart G., Tickle T. L., Huttenhower C., Segata N. 2015. Compact graphical representation of phylogenetic data and metadata with, GraPhlAn. PeerJ, 3: e1029
Bender D. A. 2012. The aromatic amino acids: Phenylalanine, tyrosine and tryptophan. In Bender D. A. (Ed.), Amino Acid Metabolism. 3rd Ed. Chichester. New Jersey: Wiley-Blackwell Press, 323–376
Benjamini Y., Hochberg Y. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc B, 57: 289–300
Bray J. R., Curtis J. T. 1957. An ordination of the upland forest communities of Southern Wisconsin. Ecol Monogr, 27: 325–349
Buchfink B., Xie C., Huson D. H. 2015. Fast and sensitive protein alignment using DIAMOND. Nat Methods, 12: 59–60
Butler M. W., Lutz T. J., Fokidis H. B., Stahlschmidt Z. R. 2016. Eating increases oxidative damage in a reptile. J Exp Biol, 219: 1969–1973
Caporaso J. G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F. D, Costello E. K., Fierer N., Pe?a A. G., Goodrich J. K., Gordon J. I., Huttley G. A., Kelley S. T., Knights D., Koenig J. E., Ley R. E., Lozupone C. A., McDonald D., Muegge B. D., Pirrung M., Reeder J., Sevinsky J. R., Turnbaugh P. J., Walters W. A., Widmann J. W., Yatsunenko T. Y., Zaneveld J., Knigh R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods, 7: 335–336
Carbonero F., Benefiel A. C., Alizadehghamsari A. H., Gaskins H. R. 2012. Microbial pathways in colonic sulfur metabolism and links with health and disease. Front Physiol, 3: 448
Carey H. V., Walters W. A., Knight R. 2013. Seasonal restructuring of the ground squirrel gut microbiota over the annual hibernation cycle. Am J Physiol-Regul Integr Comp Physiol, 304: R33–R42
Cerf-Bensussan N., Gaboriau-Routhiau V. 2010. The immune system and the gut microbiota: Friends or foes? Nat Rev Immunol, 10: 735–744
Chen S. K., Yang D. D., Yang W. C., Chen Y. H. 2013. Artificial incubation and snakelet captive breeding of Mangshan pitviper (Protobothrops mangshanensis). Chin J Ecol, 32: 3048–3053 (In Chinese)
Cho Y. S., Hu L., Hou H., Lee H., Xu J., Kwon S., Oh S., Kim H., Jho S., Kim S., Shin Y., Kim B. C., Kim H., Kim C., Jinluo S., Johnson W. E., Koepfli K. P., Kuntzel A. S., Turner J. A., Marker L., Harper C., Miller S. M., Jacobs W., Bertola L. D., Kim T. H., Lee S., Zhou Q., Jung H. J., Gadhvi P., Xu P., Xiong Y., Luo Y., Pan S., Gou C., Chu X., Zhang J., Liu S., He J., Chen Y., Yang L., Yang Y., He J., Liu S., Wang J., Kim C. H., Kawk H., Kim J. S., Hwang S., Ko J., Kim C. B., Kim S., Bayarlkhagva D., Paek W. K., Kim S. J., Brien S. J., Wang J., Bhak J. 2013. The tiger genome and comparative analysis with lion and snow leopard genomes. Nat Commun, 4: 2433
Cirstea M., Radisavljevic N., Finlay B. B. 2018. Good bug, bad bug: Breaking through microbial stereotypes. Cell Host Microbe, 23: 10–13
Clayton J. B., Vangay P., Huang H., Ward T., Hillmann B. M., Al-Ghalith G. A., Travis D. A., Long H. T., Tuan B. V., Minh V. V., Cabana F., Nadler T., Toddes B., Murphy T., Glander K. E., Johnson T. J., Knights D. 2016. Captivity humanizes the primate microbiome. Proc Natl Acad Sci USA, 113: 10376–10381
Colston T. J., Noonan B. P., Jackson C. R. 2015. Phylogenetic analysis of bacterial communities in different regions of the gastrointestinal tract of Agkistrodon piscivorus, the cottonmouth snake. PLoS ONE, 10: e0128793
Colston T. J. 2017. Gut microbiome transmission in lizards. Mol Ecol, 26: 972–974
Costea P. I., Hildebrand F., Manimozhiyan A., B?ckhed F., Blaser M. J., Bushman F. D., de Vos W. M., Ehrlich S. D., Fraser C. M., Hattori M., Huttenhower C., Jeffery I. B., Knights D., Lewis J. D., Ley R. E., Ochman H., O’Toole P. W., Quince C., Relman D. A., Shanahan F., Sunagawa S., Wang J., Weinstock G. M., Wu G. D., Zeller G., Zhao L. P., Raes J., Knight R., Bork P. 2018. Enterotypes in the landscape of gut microbial community composition. Nat Microbiol, 3: 8–16
Costello E. K., Gordon J. I., Secor S. M., Knight R. 2010. Postprandial remodeling of the gut microbiota in Burmese pythons. ISME J, 4: 1375–1385
Dallas J. W., Meshaka W. E., Zeglin L., Warne R. W. 2021. Taxonomy, not locality, influences the cloacal microbiota of two nearctic colubrids: A preliminary analysis. Mol Biol Rep, 48: 6435–6442
Dill-Mcfarland K. A., Neil K. L., Zeng A., Sprenger R. J., Kurtz C. C., Suen G., Carey H. V. 2014. Hibernation alters the diversity and composition of mucosa-associated bacteria while enhancing antimicrobial defence in the gut of 13-lined ground squirrels. Mol Ecol, 23: 4658–4669
Eckburg P. B., Bik E. M., Bernstein C. N., Purdom E., Dethlefsen L., Sargent M., Gill K. E., Relman D. A. 2005. Diversity of the human intestinal microbial flora. Science, 308: 1635–1638
Eisenbach M. 1996. Control of bacterial chemotaxis. Mol Microbiol, 20: 903–910
Eliades S. J., Brown J. C., Colston T. J., Fisher R. N., Niukula J. B., Gray K., Vadada J., Rasalato S., Siler C. D. 2021. Gut microbial ecology of the Critically Endangered Fijian crested iguana (Brachylophus vitiensis): Effects of captivity status and host reintroduction on endogenous microbiomes. Ecol Evol, 11: 4731–4743
Foster M. L., Dowd S. E., Stephenson C., Steiner J. M., Suchodolski J. S. 2013. Characterization of the fungal microbiome (mycobiome) in fecal samples from dogs. Vet Med Int, 2013: 658373
Fu L., Niu B., Zhu Z., Wu S., Li W. 2012. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics, 28: 3150–3152
Gong S. P., Yang D. D., Chen Y. H., Lau M., Wang F. M. 2013. Population status, distribution and conservation needs of the endangered Mangshan pit viper Protobothrops mangshanensis of China. Oryx, 47: 122–127
Handl S., Dowd S. E., Garcia-Mazcorro J. F., Steiner J. M., Suchodolski J. S. 2011. Massive parallel 16S rRNA gene pyrosequencing reveals highly diverse fecal bacterial and fungal communities in healthy dogs and cats. Fems Microbiol Ecol, 762: 301–310
Higgins C. F. 1992. ABC transporters: From microorganisms to man. Annu Rev Cell Biol, 8: 67–113
Hong P. Y., Wheeler E., Cann I. K., Mackie R. I. 2011. Phylogenetic analysis of the fecal microbial community in herbivorous land and marine iguanas of the Galápagos Islands using 16S rRNA-based pyrosequencing. ISME J, 5: 1461–1470
Hu M. X., Tan Q. Y., Li Y., Yang D. D. 2013. Allopatric captive rearing in the tropics increases the growth rates of Deinagkistrodon acutus snakelets. Sci Silv Sin, 49: 194–198 (In Chinese)
Huang B. H., Chang C. W., Huang C. W., Gao J., Liao P. 2018a. Composition and functional specialists of the gut microbiota of frogs reflect habitat differences and agricultural activity. Front Microbiol, 8: 2670
Huang P., Zhang Y., Xiao K., Jiang F., Wang H., Tang D., Liu D., Liu B., Liu Y., He X., Liu H., Qing Z., Liu C., Huang J., Ren Y., Yuan L., Yin L., Lin Q., Zeng C., Su X., Yuan J., Lin L., Hu N., Cao H., Huang S., Guo Y., Fan W., Zeng J. 2018b. The chicken gut metagenome and the modulatory effects of plant-derived benzylisoquinoline alkaloids. Microbiome, 6: 211
Jiang H. Y., Ma J. E., Li J., Zhang X. J., Li L. M., He N., Liu H. Y., Luo S. Y., Wu Z. J., Han R. C. 2017. Diets alter the gut microbiome of crocodile lizards. Front Microbiol, 8: 2636
Jiang Z. G., Jiang J. P., Wang Y. Z., Zhang E., Zhang Y. Y., Li L. L., Xie F., Ji B., Cao L., Zheng G. M. 2016. Red list of China’s vertebrates. Biodiv Sci, 24: 500–551 (In Chinese)
Kamada N., Seo S. U., Chen G. Y., Nunez G. 2013. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol, 13: 321–335
Keenan S. W., Engel A. S., Elsey R. M. 2013. The alligator gut microbiome and implications for archosaur symbioses. Sci Rep Uk, 3: 2877
Kim S., Cho Y. S., Kim H. M., Chuang O., Yeo J. H. 2016. Comparison of carnivore, omnivore, and herbivore mammalian genomes with a new leopard assembly. Genome Biol, 17: 211
Kohl K. D., Brun A., Magallanes M., Brinkerhoff J., Laspiur A., Acosta J. C., Caviedes-Vidal E., Bordenstein S. R. 2017. Gut microbial ecology of lizards: Insights into diversity in the wild, effects of captivity, variation across gut regions, and transmission. Mol Ecol, 26: 1175–1189
Kohl K. D., Brun A., Magallanes M., Brinkerhoff J., Laspiur A., Acosta J. C., Bordenstein S. R., Caviedes-Vidal E. 2016. Physiological and microbial adjustments to diet quality permit facultative herbivory in an omnivorous lizard. J Exp Biol, 219: 1903–1912
Kohl K. D., Skopec M. M., Dearing M. D. 2014. Captivity results in disparate loss of gut microbial diversity in closely related hosts. Conserv Physiol, 2: cou009
Kundu P., Blacher E., Elinav E., Pettersson S. 2017. Our gut microbiome: The evolving inner self. Cell, 171: 1481–1493
Kurtz C. C., Carey H. V. 2007. Seasonal changes in the intestinal immune system of hibernating ground squirrels. Dev Comp Immunol, 31: 415–428
Levin D., Raab N., Pinto Y., Rothschild D., Segal E. 2021. Diversity and functional landscapes in the microbiota of animals in the wild. Science, 372: eabb5352
Ley R. E., Hamady M., Lozupone C., Turnbaugh P. J., Ramey R. R., Bircher J. S., Schlegel M. L., Tucker T. A., Schrenzel M. D., Knight R. 2008a. Evolution of mammals and their gut microbes. Science, 320: 1647–1651
Ley R. E., Lozupone C. A., Hamady M., Knight R., Gordon J. I. 2008b. Worlds within worlds: Evolution of the vertebrate gut microbiota. Nat Rev Microbiol, 6: 776–788
Li H., Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25: 1754–1760
Li P. P., Wang W. S., Lv X. P. 2013. Snake conservation and sustainable utilization in China: History, statues and future. J Shenyang Norm Univ: Nat Sci Ed, 31: 129–135 (In Chinese)
Lin M., Zeng C. X., Li Z. Q., Ma Y., Jia X. Q. 2019. Comparative analysis of the composition and function of fecal‐gut bacteria in captive juvenile Crocodylus siamensis between healthy and anorexic individuals. MicrobiologyOpen, 8: e929
Lopez C. A., Winter S. E., Rivera-Chavez F., Xavier M. N., Poon V., Nuccio S. P., Tsolis R. M., Baumler A. J. 2012. Phage-mediated acquisition of a type III secreted effector protein boosts growth of salmonella by nitrate respiration. Mbio, 3: e00143-12
Marks J., Debnam E. S., Unwin R. J. 2010. Phosphate homeostasis and the renal-gastrointestinal axis. Am J Physiol-renal, 299: F285–F296
Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. Embnet J, 17: 10–12
McKenney E. A., O’Connell T. M., Rodrigo A., Yoder A. D. 2018. Feeding strategy shapes gut metagenomic enrichment and functional specialization in captive lemurs. Gut Microbes, 9: 202–217
McKenzie V. J., Song S. J., Delsuc F., Prest T. L., Oliverio A. M., Korpita T. M., Alexiev A., Amato K. R., Metcalf J. L., Kowalewski M., Avenant N. L., Link A., Di Fiore A., Seguin-Orlando A., Feh C., Orlando L., Mendelson J. R., Sanders J., Knight R. 2017. The effects of captivity on the mammalian gut microbiome. Integr Comp Biol, 57: 690–704
Mclaughlin R. W., Cochran P. A., Dowd S. E. 2015. Metagenomic analysis of the gut microbiota of the Timber rattlesnake, Crotalus horridus. Mol Biol Rep, 42: 1187–1195
Montoya-Ciriaco N., Gómez-Acata S., Mu?oz-Arenas L. C., Dendooven L., Estrada-Torres A., de la Vega-Pérez A. H., Navarro-Noya Y. E. 2020. Dietary effects on gut microbiota of the mesquite lizard Sceloporus grammicus (Wiegmann, 1828) across different altitudes. Microbiome, 8: 6
Nelson T. M., Rogers T. L., Carlini A. R., Brown M. V. 2012. Diet and phylogeny shape the gut microbiota of Antarctic seals: A comparison of wild and captive animals. Environ Microbiol, 15: 1132–1145
Pan C., Weng J., Wang W. 2016. Conformational dynamics and protein–substrate interaction of ABC transporter btucd at the occluded state revealed by molecular dynamics simulations. Biochemistry-US, 55: 6897–6907
Peng Y., Leung H. C. M., Yiu S. M., Chin F. Y. L. 2012. IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics, 28: 1420–1428
Ramette A. 2007. Multivariate analyses in microbial ecology. Fems Microbiol Ecol, 62: 142–160
Ren T., Kahrl A. F., Wu M., Cox R. M. 2016. Does adaptive radiation of a host lineage promote ecological diversity of its bacterial communities? a test using gut microbiota of anolis lizards. Mol Ecol, 25: 4793–4804
Roediger W. E. 1980. Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut, 21: 793–798
Sabbagh Y., Giral H., Caldas Y., Levi M., Schiavi S. C. 2011. Intestinal phosphate transport. Adv Chronic Kidney D, 18: 85–90
Sandri C., Correa F., Spiezio C., Trevisi P., Mattarelli P. 2020. Fecal microbiota characterization of seychelles giant tortoises (Aldabrachelys gigantea) living in both wild and controlled environments. Front Microbiol, 11: 569249
Scheelings T. F., Moore R. J., Van T. T. H., Klaassen M., Reina R. D. 2020. The gut bacterial microbiota of sea turtles differs between geographically distinct populations. Endang Species Res, 42: 95–108
Schluter J., Foster K. R. 2012. The evolution of mutualism in gut microbiota via host epithelial selection. PLoS Biol, 10: e1001424
Schmitt L., Tampé R. 2002. Structure and mechanism of ABC transporters. Curr Opin Struc Biol, 12: 754–760
Segata N., Izard J., Waldron L., Gevers D., Miropolsky L., Garrett W., Huttenhower C. 2011. Metagenomic biomarker discovery and explanation. Genome Biol, 12: R60
Shapira M. 2016. Gut microbiotas and host evolution: Scaling up symbiosis. Trends Ecol Evol, 31: 539–549
Sharpton T. J. 2018. Role of the gut microbiome in vertebrate evolution. Msystems, 3: e00174-17
Shibata N., Kunisawa J., Kiyono H. 2017. Dietary and microbial metabolites in the regulation of host immunity. Front Microbiol, 8: 2171
Smith S. N., Colston T. J., Siler C. D. 2021. Venomous snakes reveal ecological and phylogenetic factors influencing variation in gut and oral microbiomes. Front Microbiol, 12: 657754
Sommer F., St?hlman M., Ilkayeva O., Arnemo J. M., Kindberg J., Josefsson J., Newgard C. B., Fr?bert O., B?ckhed F. 2016. The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep, 14: 1655–1661
Song X., Zhang J., Song J., Zhai Y. 2021a. Decisive effects of life stage on the gut microbiota discrepancy between two wild populations of hibernating Asiatic toads (Bufo gargarizans). Front Microbiol, 12: 665849
Song Y., Li F., Fischer-Tlustos A. J., Neves A. L. A., He Z., Steele M. A. 2021b. Metagenomic analysis revealed the individualized shift in ileal microbiome of neonatal calves in response to delaying the first colostrum feeding. J Dairy Sci, 104: 8783–8797
Sousa-Pereira P., Cova M., Abrantes J., Ferreira R., Trindade F., Barros A., Gomes P., Colao B., Amado F., Esteves P. J. 2015. Cross-species comparison of mammalian saliva using an LC-MALDI based proteomic approach. Proteomics, 15: 1598–1607
Sullam K. E., Essinger S. D., Lozupone C. A., Connor M. P., Rosen G. L., Knight R., Kilham S. S., Russell J. A. 2012. Environmental and ecological factors that shape the gut bacterial communities of fish: A meta-analysis. Mol Ecol, 21: 3363–3378
Swanson K. S., Dowd S. E., Suchodolski J. S., Middelbos I. S., Vester B. M., Barry K. A., Nelson K. E., Torralba M. T., Henrissat B., Coutinho P. M., Cann I. K., White B. A., Fahey Jr G. C. 2011. Phylogenetic and gene-centric metagenomics of the canine intestinal microbiome reveals similarities with humans and mice. ISME J, 5: 639–649
Tang G. S., Liang X. X., Yang M. Y., Wang T. T., Chen J. P., Du W. G., Li H., Sun B. J. 2020. Captivity influences gut microbiota in crocodile lizards (Shinisaurus crocodilurus). Front Microbiol, 11: 550
Tang K. Y., Wang Z. W., Wan Q. H., Fang S. G. 2019. Metagenomics reveals seasonal functional adaptation of the gut microbiome to host feeding and fasting in the Chinese alligator. Front Microbiol, 10: 2409
Thomas F., Hehemann J. H., Rebuffet E., Czjzek M., Michel G. 2011. Environmental, and gut Bacteroidetes: The food connection. Front Microbiol, 2: 93
Tindall M. J., Gaffney E. A., Maini P. K., Armitage J. P. 2012. Theoretical insights into bacterial chemotaxis. Wiley Interdiscip Rev Syst Biol Med, 4: 247–259
Tong Q., Cui L. Y., Hu Z. F., Du X. P., Wang H. B. 2020. Environmental and host factors shaping the gut microbiota diversity of brown frog Rana dybowskii. SCI Total Environ, 741: 140142
Trevelline B. K., Fontaine S. S., Hartup B. K., Kohl K. D. 2019a. Conservation biology needs a microbial renaissance: A call for the consideration of host-associated microbiota in wildlife management practices. Proc R Soc B, 286: 20182448
Trevelline B. K., MacLeod K. J., Langkilde T., Kohl K. D. 2019b. Gestation alters the gut microbiota of an oviparous lizard. Fems Microbiol Ecol, 95: fiz086
Waite D. W., Taylor M. W. 2014. Characterizing the avian gut microbiota: Membership, driving influences, and potential function. Front Microbiol, 5: 223
Wang Y. Z. 2021. China’s Red list of biodiversity: Vertebrates, Vol. III, Reptiles (I). Beijing: Science Press (In Chinese)
Weng C. H., Yang Y. J., Wang D. 2016. Functional analysis for gut microbes of the brown tree frog (Polypedates megacephalus) in artificial hibernation. BMC Genomics, 17: 1024
Winter S. E., Winter M. G., Xavier M. N., Thiennimitr P., Poon V., Keestra A. M., Laughlin R. C., Gomez G., Jing W., Lawhon S. D. 2013. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science, 339: 708–711
Xiao G., Liu S., Xiao Y., Zhu Y., Zhao H., Li A., Li Z., Feng J. 2019. Seasonal changes in gut microbiota diversity and composition in the greater horseshoe bat. Front Microbiol, 10: 2247
Yang D. D., Chen S. K., Chen Y. H., Yan Y. Y. 2013. Using head patch pattern as a reliable biometric character for noninvasive individual recognition of an endangered pitviper Protobothrops mangshanensis. Asian Herpetol Res, 4: 134–139
Yang S., Gao X., Meng J., Zhang A., Zou L. 2018. Metagenomic analysis of bacteria, fungi, bacteriophages, and helminths in the gut of giant pandas. Front Microbiol, 9: 1717
Yang Y., Pollard A. M., Hofler C., Poschet G., Wirtz M., Hell R., Sourjik V. 2015. Relation between chemotaxis and consumption of amino acids in bacteria. Mol Microbiol, 96: 1272–1282
Yantiss R., Orsi R. H., Wiedmann M., Baumgart M., Dogan B., Rishniw M., Weitzman G., Bosworth B., Mcdonough P., Kim S. G., Berg D. B., Schukken Y., Scherl E., Simpson K. W. 2007. Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn’s disease involving the ileum. ISME J, 1: 403–418
Youngblut N. D., Reischer G. H., Walters W., Schuster N., Farnleitner A. H. 2019. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat Commun, 10: 2200
Yuan M. L., Dean S. H., Longo A. V., Rothermel B. B., Tuberville T. D., Zamudio K. R. 2015. Kinship, inbreeding, and fine-scale spatial structure influence gut microbiota in a hindgut-fermenting tortoise. Mol Ecol, 24: 2521–2536
Zhang B., Ren J., Yang D. D., Liu S. R., Gong X. G. 2019. Comparative analysis and characterization of the gut microbiota of four farmed snakes from southern China. PeerJ, 7: e6658
Zhang W., Li N., Tang X. L., Liu N. F., Zhao W. 2018. Changes in intestinal microbiota across an altitudinal gradient in the lizard Phrynocephalus vlangalii. Ecology and Evolution, 8: 4695–4703
Zhu W., Lomsadze A., Borodovsky M. 2010. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res, 38: e132
Zoetendal E. G., von Wright A., Vilpponen-Salmela T., Ben-Amor K., Akkermans A. D., de Vos W. M. 2002. Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl Environ Microb, 68: 3401–3407

更新日期/Last Update: 2022-12-25