[1].Effects of Life Histories on Genome Size Variation in Squamata[J].Asian Herpetological Research,2021,12(3):289-294.[doi:10.16373/j.cnki.ahr.210018]
 Chuan CHEN,Long JIN,Ying JIANG and Wenbo LIAO*.Effects of Life Histories on Genome Size Variation in Squamata[J].Asian Herpetological Research(AHR),2021,12(3):289-294.[doi:10.16373/j.cnki.ahr.210018]
点击复制

Effects of Life Histories on Genome Size Variation in Squamata()
分享到:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

卷:
12
期数:
2021年3期
页码:
289-294
栏目:
出版日期:
2021-09-25

文章信息/Info

Title:
Effects of Life Histories on Genome Size Variation in Squamata
文章编号:
AHR-2021-0018
Author(s):
Chuan CHEN123 Long JIN123 Ying JIANG123 and Wenbo LIAO123*
1 Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, Sichuan, China
2 Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong 637009, Sichuan, China
3 Institute of Eco-adaptation in Amphibians and Reptiles, China West Normal University, Nanchong 637009, Sichuan, China
Keywords:
genome size body mass evolutionary rate life histories
DOI:
10.16373/j.cnki.ahr.210018
Abstract:
Genome size changes significantly among taxonomic levels, and this variation is often related to the patterns shaped by the phylogeny, life histories and ecological factors. However, there are mixed evidences on the main factors affecting molecular evolution in animals. In this study, we used phylogenetic comparative analysis to investigate the evolutionary rate of genome size and the relationships between genome size and life histories (i.e., hatchling mass, clutch size, clutches per year, age at sexual maturity, lifespan and body mass) among 199 squamata species. Our results showed that the evolutionary rate of genome size in Lacertilia was significantly faster than Serpentes. Moreover, we also found that larger species showed larger hatchling mass, more clutches per year and clutch size and longer lifespan. However, genome size was negatively associated with clutch size and clutches per year, but not associated with body mass we looked at. The findings suggest that larger species do not possess the evolution of large genomes in squamata.

参考文献/References:

Adams D. C. 2013. Comparing evolutionary rates for different phenotypic traits on a phylogeny using likelihood. Syst Biol, 62(2): 181-192
Alfsnes K., Leinaas H. P., Hessen D. O. 2017. Genome size in arthropods, different roles of phylogeny, habitat and life history in insects and crustaceans. Ecol Evol, 7(15): 5939-5947
Allen W. L., Street S. E., Capellini I. 2017. Fast life history traits promote invasion success in amphibians and reptiles. Ecol Lett, 20(2): 222-230
Angilletta M. J., Steury T. D., Sears M. W. 2004. Temperature, growth rate, and body size in ectotherms: Fitting pieces of a life-history puzzle. Integr Compar Biol, 44(6): 498-509
Bennet M. D. 1987. Variation in genome form in plants and its ecological implications. New Phytol, 106(1): 177-200
Bennett M. D., Leitch I. J. 2005. Plant genome size research: a field in focus. Ann Bot, 95(1): 1-6
Blomberg S. P., Garland T., Ives A. R. 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution, 57(4): 717-745
Botero-Castro F., Figuet E., Tilak M. K., Nabholz B., Galtier N. 2017. Avian genomes revisited: hidden genes uncovered and the rates versus traits paradox in birds. Mol Biol Evol, 34(12): 3123-3131
Cavalier-Smith T. 1985. Cell volume and the evolution of eukaryotic genome size. In: Cavalier-Smith T. (Ed.), The evolution of genome size. Wiley, Chichester, pp. 104-184
Cavalier-Smith T. 1978. Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J Cell Sci, 34(1): 247-278
Chalopin D., Naville M., Plard F., Galiana D., Volff J. N. 2015. Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates. Genome Biol Evol, 7(2): 567-580
De Smet W. H. O. 1981. The nuclear Feulgen-DNA content of the vertebrates (especially reptiles), as measured by fluorescence cytophotometry, with notes on the cell and chromosome size. Acta Zool Pathol Antverp, 76(1): 119-167
Feldman A., Sabath N., Pyron R. A., Mayrose I., Meiri S. 2016. Body sizes and diversification rates of lizards, snakes, amphisbaenians and the tuatara. Glob Ecol Biogeogr, 25(2): 187-197
Figuet E., Nabholz B., Bonneau M., Mas Carrio E., Nadachowska-Brzyska K., Ellegren H., Galtier N. 2016. Life history traits, protein evolution, and the nearly neutral theory in amniotes. Mol Biol Evol, 33(6): 1517-1527
Freckleton R. P., Harvey P. H., Pagel M. 2002. Phylogenetic analysis and comparative data: A test and review of evidence. Am Nat, 160(6): 712-726
Gibbs R. A., Pachter L. et al. 2004. Genome sequence of the brown Norway rat yields insights into mammalian evolution. Nature, 428(698): 493-521
Gregory T. R. 2005a. Genome size evolution in animals. In: Gregory T. R.(Eds), The evolution of the genome. Elsevier, New York, pp. 4-87
Gregory T. R. 2005b. The C-value enigma in plants and animals: a review of parallels and an appeal for partnership. Ann Bot, 95(1): 133-146
Gregory T. R., Johnston J. 2008. Genome size diversity in the family Drosophilidae. Heredity, 101(3): 228-238
Gregory T. R. 2001. The bigger the C-value, the larger the cell: genome size and red blood cell size in vertebrates. Blood Cell Mol Dis, 27(5): 830-843
Gregory T. R. 2002a. Genome size and developmental complexity. Genetica, 115(1): 131-146
Gregory T. R. 2002b. A bird’s‐eye view of the C-value enigma: genome size, cell size, and metabolic rate in the class Aves. Evolution, 56(1): 121-130
Gregory T. R., Hebert P. D., Kolasa J. 2000. Evolutionary implications of the relationship between genome size and body size in flatworms and copepods. Heredity, 84(2000): 201-208
Guignard M. S., Nichols R. A., Knell R. J., Macdonald A., Romila C. A., Trimmer M., Leitch I. J., Leitch A. R. 2016. Genome size and ploidy influence angiosperm species’ biomass under nitrogen and phosphorus limitation. New Phytol, 210(4): 1195-1206
Hardie D. C., Gregory T. R., Hebert P. D. N. 2002. From pixels to picograms: a beginners’ guide to genome quantification by Feulgen image analysis densitometry. J Histochem Cytochem, 50(6): 735-749
Harmon L. J., Weir J. T., Brock C. D., Glor R. E., Challenger W. 2008. GEIGER: investigating evolutionary radiations. Bioinformatics, 24(1): 129-131
Hessen D. O., Persson J. 2009. Genome size as a determinant of growth and life-history traits in crustaceans. Biol J Linn Soc, 98(2): 393-399
Hessen D. O., Daufresne M., Leinaas H. P. 2013. Temperature-size relations from the cellular-genomic perspective. Biol Rev Camb Philos, 88(2): 476-489
Huang Y., Mai C. L., Liao W. B., Kotrschal A. 2020. Body mass variation is negatively associated with brain size-evidence for the fat-brain trade-off in anurans. Evolution, 74(7): 1551-1557
Hughes A. L., Hughes M. K. 1995. Small genomes for better flyers. Nature, 377(6548): 391
Hughes A. L., Piontkivska H. 2005. DNA repeat arrays in chicken and human genomes and the adaptive evolution of avian genome size. BMC Evol Biol, 5(1): 12
Jeffery N. W., Yampolsky L. R., Gregory R. 2016. Nuclear DNA content correlates with depth, body size, and diversification rate in amphipod crustaceans from ancient Lake Baikal, Russia. Genome, 60(4): 303-309
Kapusta A., Suh A., Feschotte C. 2017. Dynamics of genome size evolution in birds and mammals. Proc Natl Acad Sci USA, 114(8): E1460-E1469
Koz?owski J., Konarzewski M., Gawelczyk A. 2003. Cell size as a link between noncoding DNA and metabolic rate scaling. Proc Natl Acad Sci USA, 100(24): 14080-14085
Lanfear R, Ho S. Y. W., Love D., Bromham L. 2010. Mutation rate is linked to diversification in birds. Proc Natl Acad Sci USA, 107(47): 20423-20428
Leinaas H. P., Jalal M., Gabrielsen T. M., Hessen D. O. 2016. Inter- and intraspecific variation in body- and genome size in calanoid copepods from temperate and arctic waters. Ecol Evol, 6(16): 5585-5595
Liedtke H. C., Gower D. J., Wilkinson M., Gomez-Mestre I. 2018. Macroevolutionary shift in the size of amphibian genomes and the role of life history and climate. Nat Ecol Evol, 2(11): 1792-1799
Lynch M., Walsh B. 2007. The origins of genome architecture. Sinauer Associates, Sunderland, Massachusetts
Lynch M. 2011. Statistical inference on the mechanisms of genome evolution. PLoS Genet, 7(6): e1001389
Mai C. L., Yu J. P., Liao W. B. 2019. Ecological and geographical reasons for the variation of digestive tract length in anurans. Asian Herpetol Res, 10(4):246-252
Mai C. L., Liao W. B., Lüpold S., Kotrschal A. 2020. Relative brain size is predicted by the intensity of intrasexual competition in frogs. Am Nat, 196(2): 169-179
McLaren I. A., Sévigny J. M., Frost B. 1989. Evolutionary and ecological significance of genome sizes in the copepod genus Pseudocalanus. Can J Zool, 67(3): 565-569
McLaren I. A., Marcogliese D. J. 1983. Similar nucleus numbers among copepods. Can J Zool, 61(4): 721-724
Nabholz B., Uwimana N., Lartillot N. 2013. Reconstructing the phylogenetic history of long-term effective population size and life-history traits using patterns of amino acid replacement in mitochondrial genomes of mammals and birds. Genome Biol Evol, 5(7): 1273-1290
Neiman M., Beaton M. J., Hessen D. O., Jeyasingh P. D., Weider L. J. 2015. Endopolyploidy as a potential driver of animal ecology and evolution. Biol Rev, 92(1): 234-247
Ogata H., Fujibuchi W., Kanehisa M. 1996. The size differences among mammalian introns are due to the accumulation of small deletions. FEBS Lett, 390(1): 99-103
Olmo E., Morescalchi A. 1978. Genome and cell sizes in frogs: a comparison with salamanders. Experientia, 34(1): 44-46
Organ C. L., Shedlock A. M., Meade A., Pagel M., Edwards S. V. 2007. Origin of avian genome size and structure in non-avian dinosaurs. Nature, 446(7132): 180-184
Orme C. D. L., Freckleton R. P., Thomas G. H., Petzoldt T., Fritz S. A. 2012. caper: Comparative analyses of phylogenetics and evolution in R. Retrieved from http://R-Forge.R-project.org/projects/caper/
Pagel M. 1999. Inferring the historical patterns of biological evolution. Nature, 401(6756): 877-884
Petrov D. A. 2001. Evolution of genome size: new approaches to an old problem. Trends Genet, 17(1): 23-28
Pyron R. A., Burbrink F. T., Wiens J. J. 2013. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol Biol, 13(1): 1-54
Rees D. J., Belzile C., Glemet H., Dufresne F. 2008. Large genomes among caridean shrimp. Genome, 51(2): 159-163
Revell L. J. 2012. Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol, 3(2): 217-223
Simmons L. W., Fitzpatrick J. L. 2016. Sperm competition and the coevolution of pre- and postcopulatory traits: Weapons evolve faster than testes among onthophagine dung beetles. Evolution, 70(5): 998-1008
Sun C., Lopez Arriaza J. R., Mueller R. L. 2012. Slow DNA loss in the gigantic genomes of salamanders. Genome Biol Evol, 4(12): 1340-1348
Tang Y., Mai C. L., Yu J. P., Li D. Y. 2019. Investigation of the role of life-history traits in mammal genomes. Anim Biol, 70(2): 121-130
Timofeev S. 2001. Bergmann’s principle and deep-water gigantism in marine crustaceans. Biol Bull Rus Acad Sci, 28(6): 646-650
Van de Peer Y., Maere S., Meyer A. 2009. The evolutionary significance of ancient genome duplications. Nat Rev Genet, 10(10): 725-732
Vinogradov A. E. 1997. Nucleotypic effect in homeotherms: body-mass independent resting metabolic rate of passerine birds is related to genome size. Evolution, 51(1): 220-225
Vinogradov A. E. 1995. Nucleotypic effect in homeotherms: body-mass-corrected basal metabolic rate of mammals is related to genome size. Evolution, 49(6): 1249-1259
Weber C. C., Nabholz B., Romiguier J., Ellegren H. 2014. KR/KC but not dN/dS correlates positively with body mass in birds, raising implications for inferring lineage-specific selection. Genome Biol, 15(12): 1-13
Whitney K. D., Garland T. 2010. Did genetic drift drive increases in genome complexity?. PLoS Genet, 6(8): e1001080
Wyngaard G. A., Rasch E. M., Manning N. M., Gasser K., Domangue R. 2005. The relationship between genome size, development rate, and body size in copepods. Hydrobiologia, 532(1): 123-137
Yu J. P., Liu W., Mai C. L., Liao W. B. 2020. Genome size variation is associated with life-history traits in birds. J Zool, 310(4): 255-260

更新日期/Last Update: 2021-09-25