[1].Nonlinear Phenomena Conveying Body Size Information and Improving Attractiveness of the Courtship Calls in the Males of Odorrana tormota[J].Asian Herpetological Research,2021,12(1):117-123.[doi:10.16373/j.cnki.ahr.200028]
 Yatao WU,Jiahui BAO,Pingshin LEE,et al.Nonlinear Phenomena Conveying Body Size Information and Improving Attractiveness of the Courtship Calls in the Males of Odorrana tormota[J].Asian Herpetological Research(AHR),2021,12(1):117-123.[doi:10.16373/j.cnki.ahr.200028]

Nonlinear Phenomena Conveying Body Size Information and Improving Attractiveness of the Courtship Calls in the Males of Odorrana tormota()

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]



Nonlinear Phenomena Conveying Body Size Information and Improving Attractiveness of the Courtship Calls in the Males of Odorrana tormota
Yatao WU1 Jiahui BAO1 Pingshin LEE1 Jinmei WANG1 Sheng WANG1 Fang ZHANG12*
1College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
2 Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Wuhu 241000, Anhui, China
body size mate choice nonlinear phenomena Odorrana tormota phonotaxis
Nonlinear phenomena are commonly shown in the vocalization of animals and exerts different adaptive functions. Although some studies have pointed out that nonlinear phenomena can enhance the individual identification of male Odorrana tormota, whether the nonlinear phenomena play a specific role in the sexual selection of O. tormota remain unclear. Here we presented evidence that there was a significant negative correlation (Pearson: n = 30, r = 0.65, P < 0.001) between the nonlinear phenomena content and snout-vent length in the male O. tormota, and two-choice amplexus experiments showed that female O. tormota preferred male with smaller body size containing higher nonlinear phenomena content in its calls. Phonotaxis experiments also revealed that females preferred calls with higher nonlinear phenomena content. Additionally, compared to the calls with lower nonlinear phenomena content and higher fundamental frequency, there was shorter response time in phonotactic behaviour of female induced by the calls with higher nonlinear phenomena content and lower fundamental frequency. We argue that the nonlinear phenomena content in the calls of male O. tormota can convey its body size information and may provide important clues for female frogs in darkened surroundings to identify males’ body size during mate choice, meanwhile, higher nonlinear phenomena content in males’ calls may increase the attractiveness of males to females. The results of this study provide confirmation that, for O. tormota, nonlinear phenomena have specific function in mate choice.


Banner A. 1972. Use of sound in predation by young lemon sharks, Negaprion brevirostris (Poey). Bull Mar Sci, 22(2): 251–283
Bee M. A. 2007. Selective phonotaxis by male wood frogs (Rana sylvatica) to the sound of a chorus. Behav Ecol Sociobiol, 61: 955–966
Blesdoe E. K., Blumstein D. T. 2014. What is the sound of fear? Behavioral responses of white-crowned sparrows Zonotrichia leucophrys to synthesized nonlinear acoustic phenomena. Curr Zool, 60: 534–541
Blumstein D. T., Recapet C. 2009. The sound of arousal: The addition of novel non‐linearities increases responsiveness in marmot alarm calls. Ethology, 115(11): 1074–1081
Boersma P., Weenink D. PRAAT: doing phonetics by computer (Version 6.0.46) [Computer program]. Retrieved from http://www.fon.hum.uva.nl/praat/
Bowman R. I. 1979. Adaptive morphology of song dialects in Darwin’s finches. J Ornithol, 120(4): 353–389
Branstetter B. K., Mercado III E. 2006. Sound Localization by Cetaceans. Int J Comp Psychol, 19(1): 26–61
Bunnell P. 1973. Vocalizations in the territorial behavior of the frog Dendrobates pumilio. Copeia,1973(2): 277–284
Castellano S., Giacoma C., Dujsebayeva T. 2000. Morphometric and advertisement call geographic variation in polyploid green toads. Biol J Linn Soc, 70(2): 341–360
Cazau D., Adam O., Aubin T., Laitman J. T., Reidenberg J. S. 2016. A study of vocal nonlinearities in humpback whale songs: from production mechanisms to acoustic analysis. Sci Rep, 6: 31660
Charlton B. D., Reby D. 2016. The evolution of acoustic size exaggeration in terrestrial mammals. Nat Commun, 7: 12739
Dale J., Lank D. B., Reeve H. K. 2001. Signaling individual identity versus quality: a model and case studies with ruffs, queleas, and house finches. Am Nat, 158(1): 75–86
DeWolfe B. B., Baptista L. F. 1995. Singing behavior, song types on their wintering grounds and the question of leap-frog migration in Puget Sound White-crowned Sparrows. Condor, 97(2): 376–389
Digby A., Bell B. D., Teal P. D. 2014. Non-linear phenomena in little spotted kiwi calls. Bioacoustics, 23(2): 113–128
Emerson S. B., Boyd S. K. 1999. Mating vocalizations of female frogs: control and evolutionary mechanisms. Brain Behav Evol, 53(4): 187–197
Facchini A., Bellieni C. V., Marchettini N., Pulselli F. M., Tiezzi E. B. 2005. Relating pain intensity of newborns to onset of nonlinear phenomena in cry recordings. Phys Lett A, 338(3-5): 332–337
Fearey J., Elwen S. H., James B., Gridley T. 2019. Identification of potential signature whistles from free-ranging common dolphins (Delphinus delphis) in South Africa. Anim Cogn, 22(5): 777–789
Feng A. S., Narins P. M. 2008. Ultrasonic communication in concave-eared torrent frogs (Amolops tormotus). J Comp Physiol A, 194(2): 159–167
Feng A. S., Riede T., Arch V. S., Yu Z., Xu Z. M., Yu X. J., Shen J. X. 2009. Diversity of the vocal signals of concave‐eared torrent frogs (Odorrana tormota): evidence for individual signatures. Ethology, 115(11): 1015–1028
Fitch W. T., Neubauer J., Herzel H. 2002. Calls out of chaos: the adaptive significance of nonlinear phenomena in mammalian vocal production. Anim Behav, 63(3): 407–418
Fletcher N. H., Index A. 2005. Acoustic systems in biology: from insects to elephants. Acoust Aust, 33(3): 83–88
Gerhardt H. C., Tanner S. D., Corrigan C. M., Walton H. C. 2000. Female preference functions based on call duration in the gray tree frog (Hyla versicolor). Behav Ecol, 11(6): 663–669
Gottfried B. M., Andrews K., Haug M. 1985. Breeding robins and nest predators: effect of predator type and defense strategy on initial vocalization patterns. Wilson Bull, 9(2): 183–190
Hagedorn M., Heiligenberg W. 1985. Court and spark: electric signals in the courtship and mating of gymnotoid fish. Anim Behav, 33(1): 254–265
Herzel H. 1993. Bifurcations and chaos in voice signals. Appl Mech Rev, 46(7): 399–413
Herzel H., Berry D., Titze I. R., Saleh M. 1994. Analysis of vocal disorders with methods from nonlinear dynamics. J Speech Lang Hear Res, 37(5): 1008–1019
Kaltwasser M. T. 1991. Acoustic startle induced ultrasonic vocalization in the rat: a novel animal model of anxiety? Behav Brain Res, 43(2): 133–137
Karp D., Manser M. B., Wiley E. M., Townsend S. W. 2014. Nonlinearities in meerkat alarm calls prevent receivers from habituating. Ethology, 120(2): 189–196
Labra A., Silva G., Norambuena F., Velásquez N., Penna M. 2013. Acoustic features of the weeping lizard’s distress call. Copeia, 2013(2): 206–212
Liu S., Yuan C., Wang J., Wang S., Zhang F. 2019. Effects of short-range communication signals on the rate of amplexus success in female frogs (Odorrana tormota). Chin J Zool, 54(5): 652–658
Madison D. M. 1977. Chemical communication in amphibians and reptiles Chemical signals in vertebrates. Springer,135–168
Matrosova V. A., Schneiderová I., Volodin I. A., Volodina E. V. 2012. Species-specific and shared features in vocal repertoires of three Eurasian ground squirrels (genus Spermophilus). Acta Theriol, 57: 65-78
Mitani J. C., Hasegawa T., Gros‐Louis J., Marler P., Byrne R. 1992. Dialects in wild chimpanzees? Am J Primatol, 27(4): 233–243
Monnet J. M., Cherry M. I. 2002. Sexual size dimorphism in anurans. Proc R Soc B Biol Sci, 269(1507): 2301–2307
Mitani J. C., Hasegawa T., Gros‐Louis J., Marler P., Byrne R. 1992. Dialects in wild chimpanzees? Am J Primatol, 27: 233–243
Ord T. J., Peters R. A., Evans C. S., Taylor A. J. 2002. Digital video playback and visual communication in lizards. Anim Behav, 63(5): 879–890
Rice A. N., Land B. R., Bass A. H. 2011. Nonlinear acoustic complexity in a fish ‘two-voice’system. Proc R Soc B Biol Sci, 278(1725): 3762–3768
Riede T., Herzel H., Mehwald D., Seidner W., Trumler E., B?hme G., Tembrock G. 2000. Nonlinear phenomena in the natural howling of a dog–wolf mix. J Acoust Soc Am, 108: 1345–1442
Riede T., Zuberbühler K. 2003. The relationship between acoustic structure and semantic information in Diana monkey alarm vocalization. J Acoust Soc Am, 114: 1132–1142
Schneider J. N., Anderson R. E. 2011. Tonal vocalizations in the red wolf (Canis rufus): Potential functions of nonlinear sound production. J Acoust Soc Am, 130(4): 2275–2284
Schwartz J. J., Bee M. A. 2013. Anuran acoustic signal production in noisy environments, 91–132. In Brumm H. (Ed.), Animal Communication and Noise. Vol. 2. Berlin: Springer
Serrano J. M., Penna M., Soto-Azat C. 2019. Individual and population variation of linear and non-linear components of the advertisement call of Darwin’s frog (Rhinoderma darwinii). Bioacoustics, 29(5): 572–589
Shen J. X., Feng A. S., Xu Z. M., Yu Z. L., Arch V. S., Yu X. J., Narins P. M. 2008. Ultrasonic frogs show hyperacute phonotaxis to female courtship calls. Nature, 453: 914–916
Shen J. X., Xu Z. M., Yu Z. L., Wang S., Zheng D. Z., Fan S. C. 2011. Ultrasonic frogs show extraordinary sex differences in auditory frequency sensitivity. Nat Commun, 2: 342
Stabel J., Wendler G., Scharstein H. 1989. Cricket phonotaxis: localization depends on recognition of the calling song pattern. J Comp Physiol A, 165(2): 165–177
Taylor R. C., Klein B. A., Stein J., Ryan M. J. 2011. Multimodal signal variation in space and time: how important is matching a signal with its signaler. J Exp Biol, 214(5): 815–820
Tokuda I., Riede T., Neubauer J., Owren M. J., Herzel H. 2002. Nonlinear analysis of irregular animal vocalizations. J Acoust Soc Am, 111(6): 2908–2919
Townsend S. W., Manser M. B. 2010. The function of nonlinear phenomena in meerkat alarm calls. Biol Lett, 7(1): 47–49
Virant-Doberlet M., Kuhelj A., Polajnar J., ?turm R. 2019. Predator-prey interactions and eavesdropping in vibrational communication networks. Front Ecol Evol, 7(23): 1–15
Volodin I. A., Volodina E. V., Frey R., Gogoleva S. S., Palko I. V., Rozhnov V. V. 2017. Acoustic structure of alarm calls in Indian sambar (Rusa unicolor) and Indian muntjac (Muntiacus vaginalis) in South Vietnam. Dokl Biol Sci, 474: 110–113
Volodina E. V., Volodin I. A., Isaeva I. V., Unck C. 2006. Biphonation may function to enhance individual recognition in the dhole, Cuon alpinus. Ethology, 112: 815–825
Wermke K., Robb M. P. 2010. Fundamental frequency of neonatal crying: Does body size matter? J Voice, 24(4): 388–394
Wilden I., Herzel H., Peters G., Tembrock G. 1998. Subharmonics, biphonation, and deterministic chaos in mammal vocalization. Bioacoustics, 9: 171–196
Zhang F., Chen P., Chen Z., Zhao J. 2015. Ultrasonic frogs call at a higher pitch in noisier ambiance. Curr Zool, 61: 996–1003
Zhang F., Yuan C., Feng A. S. 2020. Female concave-eared torrent frogs prefer smaller males. J Zool, 311(4): 239–245
Zhang F., Zhao J., Feng A. S. 2017. Vocalizations of female frogs contain nonlinear characteristics and individual signatures. PLoS One, 12(3): e0174815

更新日期/Last Update: 2021-03-25