[1].Thermal Biology of Cold-climate Distributed Heilongjiang Grass Lizard, Takydromus amurensis[J].Asian Herpetological Research,2020,11(4):350-359.[doi:10.16373/j.cnki.ahr.200020]
 Xin HAO,Shiang TAO,Yu MENG,et al.Thermal Biology of Cold-climate Distributed Heilongjiang Grass Lizard, Takydromus amurensis[J].Asian Herpetological Research(AHR),2020,11(4):350-359.[doi:10.16373/j.cnki.ahr.200020]

Thermal Biology of Cold-climate Distributed Heilongjiang Grass Lizard, Takydromus amurensis()

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]



Thermal Biology of Cold-climate Distributed Heilongjiang Grass Lizard, Takydromus amurensis
Xin HAO12 Shiang TAO3 Yu MENG1 Jingyang LIU4 Luoxin CUI1 Wanli LIU1 Baojun SUN2 Peng LIU1*# and Wenge ZHAO1*#
1 College of Life Science and Technology, Harbin Normal University, Harbin 150025, Heilongjiang, China
Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
College of Chemistry and Life sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, Liaoning, China
counter gradient CTmax CTmin thermal biological trait thermal tolerance range Tsel Takydromus
Thermal biology traits reflect thermal adaptations to an environment and can be used to infer responses to climate warming in animal species. Within a widespread genus or species, assessing the latitudinal or altitudinal gradient of thermal physiological traits is essential to reveal thermal adaptations and determine future vulnerability to climate warming geographically. We determined the thermal biology traits of a cold-climate distributed lizard, Takydromus amurensis, and integrated published thermal biology traits within the genus Takydromus to reveal a preliminary geographical pattern in thermal adaptation. The mean selected body temperature (cloaca temperature; Tsel), critical thermal maximum (CTmax), critical thermal minimum (CTmin), and optimal temperature for locomotion (i.e., sprint speed; Topt) of T. amurensis were 32.6, 45.1, 3.1, and 33.4 °C, respectively. The resting metabolic rates of T. amurensis were positively related to temperature from 18 °C to 38 °C. We compared the traits of tropical T. sexlineatus, subtropical T. septentrionalis, and T. wolteri with T. amurensis and found that the CTmax and thermal tolerance range (the difference between CTmax and CTmin; TTR) increased toward high latitudes, whereas CTmin increased toward low latitudes in these four Takydromus lizards. According to this preliminary pattern, we speculate the species at medium and low latitudes would be more vulnerable to extreme heat events caused by ongoing climate warming. We highlight the importance of integrating thermal biology traits along geographical clues, and its potential contribution to uate the vulnerabilities of species in the context of climate warming.


Andrews R. M., Pough F. H. 1985. Metabolism of squamate reptiles: allometric and ecological relationships. Physiol Zool, 58(2): 214–231
Andrews R. M. 1998. Geographic variation in field body temperature of Sceloporus lizards. J Therm Biol, 23(6): 329–334
Angilletta Jr M. J. 2009. Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press
Angilletta Jr M. J., Niewiarowski P. H., Navas C. A. 2002a. The evolution of thermal physiology in ectotherms. J Therm Biol, 27(4): 249–268
Angilletta Jr M. J., Hill T., Robson M. A. 2002b. Is physiological performance optimized by thermoregulatory behavior?: a case study of the eastern fence lizard, Sceloporus undulatus. J Therm Biol, 27(3): 199–204
Avery R. A. 1978. Activity patterns, thermoregulation and food consumption in two sympatric lizard species (Podarcis muralis and P. sicula) from central Italy. J Anim Ecol, 47(1): 143–158
Bauwens D., Garland Jr T., Castilla A. M., Van Damme R. 1995. Evolution of sprint speed in lacertid lizards: morphological, physiological, and behavioral covariation. Evolution, 49(5): 848–863
Bennett A. F., Ruben J. A. 1979. Endothermy and activity in vertebrates. Science, 206(4419): 649–654
Berg W., Theisinger O., Dausmann K. H. 2017. Acclimatization patterns in tropical reptiles: uncoupling temperature and energetics. Sci Nat, 104: 91
Blouin-Demers G., Kissner K. J., Weatherhead P. J. 2000. Plasticity in preferred body temperature of young snakes in response to temperature during development. Copeia, 2000(3): 841–845
Brown J. H., Gillooly J. F., Allen A. P., Savage V. M., West G. B. 2004. Toward a metabolic theory of ecology. Ecology, 85(7): 1771–1789
Cabezas-Cartes F., Fernández J. B., Duran F., Kubisch E. L. 2019. Potential benefits from global warming to the thermal biology and locomotor performance of an endangered Patagonian lizard. PeerJ, 7: e7437
Camacho A., Rusch T. W. 2017. Methods and pitfalls of measuring thermal preference and tolerance in lizards. J Therm Biol, 68: 63–72
Chen X. J., Xu X. F., Ji X. 2003. Influence of body temperature on food assimilation and locomotor performance in white-striped grass lizards, Takydromus wolteri (Lacertidae). J Therm Biol, 28(5): 385–391
Christian K. A., Bedford G. S., Schultz T. J. 1999. Energetic consequences of metabolic depression in tropical and temperate-zone lizards. Aust J Zool, 47(2): 133–141
?orovi? J., Crnobrnja-Isailovi? J. 2018. Aspects of thermal ecology of the meadow lizard (Darevskia praticola). Amphibia-Reptilia, 39(2): 229–238
Deutsch C. A., Tewksbury J. J., Huey R. B., Sheldon K. S., Ghalambor C. K., Haak D. C., Martin P. R. 2008. Impacts of climate warming on terrestrial ectotherms across latitude. P Natl Acad Sci USA, 105(18): 6668–6672
Dillon M. E., Wang G., Huey R. B. 2010. Global metabolic impacts of recent climate warming. Nature, 467(7316): 704–706
Du W. G., Yan S. J., Ji X. 2000. Selected body temperature, thermal tolerance and thermal dependence of food assimilation and locomotor performance in adult blue-tailed skinks, Eumeces elegans. J Therm Biol, 25(3): 197–202
Gatten Jr R. E. 1974. Effect of nutritional status on the preferred body temperature of the turtles Pseudemys scripta and Terrapene ornata. Copeia, 1974(4): 912–917
Ghalambor C. K., Huey R. B., Martin P. R., Tewksbury J. J., Wang G. 2006. Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr Comp Biol, 46(1): 5–17
Gilbert A. L., Miles D. B. 2017. Natural selection on thermal preference, critical thermal maxima and locomotor performance. P Roy Soc B-Biol Sci, 284: 20170536
Gómez Alés R. G., Acosta J. C., Astudillo V., Córdoba M., Blanco G. M., Miles D. 2018. Effect of temperature on the locomotor performance of species in a lizard assemblage in the Puna region of Argentina. J Comp Physiol B, 188(6): 977–990
Güsewell S., Furrer R., Gehrig R., Pietragalla B. 2017. Changes in temperature sensitivity of spring phenology with recent climate warming in Switzerland are related to shifts of the preseason. Global change biol, 23(12): 5189–5202
Herczeg G., Kovacs T., Hettyey A., Meril? J. 2003. To thermoconform or thermoregulate? An assessment of thermoregulation opportunities for the lizard Zootoca vivipara in the subarctic. Polar Biol, 26(7): 486–490
Hertz P. E., Huey R. B., Nevo E. 1983. Homage to Santa Anita: thermal sensitivity of sprint speed in agamid lizards. Evolution, 37(5): 1075–1084
Hertz P. E., Huey R. B., Stevenson R. D. 1993. uating temperature regulation by field-active ectotherms: the fallacy of the inappropriate question. Am Nat, 142(5): 796–818
Huey R. B., Deutsch C. A., Tewksbury J. J., Vitt L. J., Hertz P. E., ?lvarez Pérez H. J., Garland T. 2009. Why tropical forest lizards are vulnerable to climate warming. P Roy Soc B-Biol Sci, 276: 1939–1948
Huey R. B., Hertz P. E. 1984. Is a Jack-of-All-Temperatures a Master of None. Evolution, 38(2): 441–444
Huey R. B., Kingsolver J. G. 1989. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol Evol, 4(5): 131–135
Huey R. B., Stevenson R. D. 1979. Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Am Zool, 19(1): 357–366
IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press
Janzen D. H. 1967. Why mountain passes are higher in the tropics. Am Nat, 101(919): 233–249
Ji X., Du W. G., Sun P. Y. 1996a. Body temperature, thermal tolerance and influence of temperature on sprint speed and food assimilation in adult grass lizards, Takydromus septentrionalis. J Therm Biol, 21(3): 155–161
Ji X., Sun P. Y., Du W. G. 1996b. Selected body temperature, thermal tolerance and food assimilation in a viviparous skink, Sphenomorphus Indicus. Neth J Zool, 47(1): 103–110
Ji X., Zheng X. Z., Xu Y. G., Sun R. M. 1995. Some aspects of thermal biology of the skink (Eumeces Chinensis). Acta Zool Sin, 41(3): 268–274
Li S. R., Wang Y., Ma L., Zeng Z. G., Bi J. H., Du W. G. 2017. Thermal ecology of three coexistent desert lizards: Implications for habitat divergence and thermal vulnerability. J Comp Physiol B, 187(7): 1009–1018
Licht P., Dawson W. R., Shoemaker V. H. 1966. Heat resistance of some Australian lizards. Copeia, 1966(2): 162-169
Luo L. G., Qu Y. F., Ji X. 2006. Thermal dependence of food assimilation and sprint speed in a lacertid lizard Eremias argus from northern China. Acta Zool Sin, 52(2): 256–262
Lutterschmidt W. I., Hutchison V. H. 1997. The critical thermal maximum: data to support the onset of spasms as the definitive end point. Can J Zool, 75(10): 1553–1560
Ma L., Sun B. J., Cao P., Li X. H., Du W. G. 2018a. Phenotypic plasticity may help lizards cope with increasingly variable temperatures. Oecologia, 187(1): 37–45
Ma L., Sun B. J., Li S. R., Hao X., Bi J. H., Du W. G. 2018b. The vulnerability of developing embryos to simulated climate warming differs between sympatric desert lizards. J Exp Zool A, 329(4-5): 252–261
Martin T. L., Huey R. B. 2008. Why “suboptimal” is optimal: Jensen’s inequality and ectotherm thermal preferences. Am Nat, 171(3): E102-E118
Ortega Z., Mencía A., Pérez-Mellado V. 2016. The peak of thermoregulation effectiveness: thermal biology of the Pyrenean rock lizard, Iberolacerta bonnali (Squamata, Lacertidae). J Therm Biol, 56: 77–83
Ortega Z., Martín‐Vallejo F. J. 2019. Main factors affecting lacertid lizard thermal ecology. Integr Zool, 14(3): 293–305
Pounds J. A., Fogden M. P. L., Campbell J. H. 1999. Biological response to climate change on a tropical mountain. Nature, 398: 611–615
Portniagina E. Y., Maslova I. V. H., Han S. H. 2019. Habitat and altitudinal distribution of two Lizard species of Genus Takydromus from the Northeast Asia (Far East of Russia, Republic of Korea). Russ J Herpetol, 26: 8–16
Refsnider J. M., Clifton I. T., Vazquez T. K. 2019. Developmental plasticity of thermal ecology traits in reptiles: Trends, potential benefits, and research needs. J Therm Biol, 84: 74–82
Shine R., Madsen T. 1996. Is thermoregulation unimportant for most reptiles? An example using water pythons (Liasis fuscus) in tropical Australia. Physiol Zool, 69(2): 252–269
Shu L., Sun B. J., Du W. G. 2010. Effects of temperature and food availability on selected body temperature and locomotor performance of Plestiodon (Eumeces) chinensis (Scincidae). Anim Biol, 60(3): 337–347
Sinervo B., Mendez-de-la-Cruz F., Miles D. B., Heulin B., Bastiaans E., Villagran-Santa Cruz M., Lara-Resendiz R., Martinez-Mendez N., Lucia Calderon-Espinosa M., Nelsi Meza-Lazaro R., Gadsden H., Javier Avila L., Morando M., De la Riva I. J., Victoriano Sepulveda P., Duarte Rocha C. F., Ibargueengoytia N., Aguilar Puntriano C., Massot M., Lepetz V., Oksanen T. A., Chapple D. G., Bauer A. M., Branch W. R., Clobert J., Sites J. W. Jr. 2010. Erosion of lizard diversity by climate change and altered thermal niches. Science, 328: 894–899
Stellatelli O. A., Villalba A., Block C., Vega L. E., Dajil J. E., Cruz F. B. 2018. Seasonal shifts in the thermal biology of the lizard Liolaemus tandiliensis (Squamata, Liolaemidae). J Therm Biol, 73: 61–70
Seebacher F., Guderley H., Elsey R. M., Trosclair P. L. 2003. Seasonal acclimatisation of muscle metabolic enzymes in a reptile (Alligator mississippiensis). J Exp Biol, 206:1193–1200
Sun B. J., Ma L., Li S. R., Williams C. M., Wang Y., Hao X., Du W. G. 2018. Phenology and the physiological niche are co-adapted in a desert dwelling lizard. Funct Ecol, 32(11): 2520–2530
Sun B. J., Tang W. Q., Zeng Z. G., Du W. G. 2014. The Seasonal acclimatisation of locomotion in a terrestrial reptile, Plestiodon chinensis (Scincidae). Asian Herpetol Res, 5(3): 197–203
Sunday J. M., Bates A. E., Dulvy N. K. 2011. Global analysis of thermal tolerance and latitude in ectotherms. P Roy Soc B-Biol Sci, 278(1713): 1823–1830
Sunday J. M., Bates A. E., Dulvy N. K. 2012. Thermal tolerance and the global redistribution of animals. Nat Clim Change, 2(9): 686–690
Sunday J. M., Bates A. E., Kearney M. R., Colwell R. K., Dulvy N. K., Longino J. T., Huey R. B. 2014. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. P Natl Acad Sci USA, 111(15): 5610–5615
Thomas C. D., Cameron A., Green R. E., Bakkenes M., Beaumont L. J., Collingham Y. C., Erasmus B. F., De Siqueira M. F., Grainger A., Hannah L. 2004. Extinction risk from climate change. Nature, 427(6970): 145–148
Van Damme R., Bauwens D., Verheyen R. F. 1991. The thermal dependence of feeding behaviour, food consumption and gut-passage time in the lizard Lacerta vivipara Jacquin. Funct Ecol, 5(4): 507–517
Wang X. Q., Li S. R., Li L., Zhang F. S., Han X. Z., Bi J. H., Sun B. J. 2019. Thermal-physiological strategies underlying the sympatric occurrence of three desert Lizard species. Asian Herpetol Res, 10(3): 190–196
Wang Z., Ma L., Shao M., Ji X. 2017. Are viviparous lizards more vulnerable to climate warming because they have evolved reduced body temperature and heat tolerance? Oecologia, 185(4): 573–582
Wilson R. J., Gutierrez D., Gutierrez J., Martinez D., Agudo R., Monserrat V. J. 2005. Changes to the elevational limits and extent of species ranges associated with climate change. Ecol Lett, 8: 1138–1146
Xu X. F., Ji X. 2006. Ontogenetic shifts in thermal tolerance, selected body temperature and thermal dependence of food assimilation and locomotor performance in a lacertid lizard, Eremias brenchleyi. Comp Biochem Physiol A, 143(1): 118–124
Xu X. X., Sun Q. L., Liu P., Zhao W. G. 2017. Effect of ambient temperature on body temperature and physiological thermoregulation ability of Takydromus amurensis. Chin J Ecol, 36(2): 447–451
Yang C., Lin S., Liu P., Zhao W. G. 2015. Physiological thermoregulation ability of a Xinjiang population of Lacerta agilis. Chin J Ecol, 34(6): 1591–1594
Yang J., Sun Y. Y., An H., Ji X. 2008. Northern grass lizards (Takydromus septentrionalis) from different populations do not differ in thermal preference and thermal tolerance when acclimated under identical thermal conditions. J Comp Physiol B, 178: 343–349.
Zhang Y. P., Ji X. 2004. The thermal dependence of food assimilation and locomotor performance in southern grass lizards, Takydromus sexlineatus (Lacertidae). J Therm Biol, 29(1): 45-53
Zhao E. M., Zhao K. T., Zhou K. Y. 1999. Fauna Sinica Reptilia Vol. 2 Squamata. Beijing: Science Press
Zhao W. G. 2002. Reptile fauna and zoogeographic division of Heilongjiang. Sichuan J Zool, 21(3): 127–129

更新日期/Last Update: 2020-12-25