[1].No Evidence for the Compensation Hypothesis in the Swelled Vent Frog (Feirana quadranus)[J].Asian Herpetological Research,2020,11(3):225-229.[doi:10.16373/j.cnki.ahr.190064]
 Yingfeng YUE,Long JIN,Chunlan MAI,et al.No Evidence for the Compensation Hypothesis in the Swelled Vent Frog (Feirana quadranus)[J].Asian Herpetological Research(AHR),2020,11(3):225-229.[doi:10.16373/j.cnki.ahr.190064]

No Evidence for the Compensation Hypothesis in the Swelled Vent Frog (Feirana quadranus)()

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]



No Evidence for the Compensation Hypothesis in the Swelled Vent Frog (Feirana quadranus)
Yingfeng YUE123 Long JIN123 Chunlan MAI123 Xiaofu HUANG123* and Wenbo LIAO123*
1 Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, Sichuan, China
2 Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong, 637009, Sichuan, China
3 Institute of Eco-adaptation in Amphibians and Reptiles, China West Normal University, Nanchong, 637009, Sichuan, China
compensation hypothesis body condition Feirana quadranus testes asymmetry testes mass
The compensation hypothesis predicts that if the left testis is defective e.g. due to developmental stress, the increased right testis serves a compensatory role, and thereby displaying testes asymmetry which can be a reliable indicator of male body condition. Here, to test the prediction of the compensation hypothesis, we analyzed difference in size between left testis and right testis and the relationship between testes asymmetry and male body condition in the swelled vent frog (Feirana quadranus). We found that the left testis was larger than right testis, displaying a significant directional asymmetry in testes size. Although testes mass was correlated with body condition, testes asymmetry was not correlated with body condition, which cannot provide evidence that the right testis had a compensatory function. Our findings suggest no evidence for the compensation hypothesis in this species due to lacking the compensatory function in right testis.


Birkhead T. R., Buchanan K. L., Devoogd T. J., Pellatt E. J., Szèkely T., Catchpole C. K. 1997. Song, sperm quality and testis asymmetry in the sedge warbler. Anim Behav, 53(5): 965–971
Birkhead T. R., Fletcher F., Pellatt E. J. 1998. Testes asymmetry, condition and sexual selection in birds: an experimental test. Proc R Soc B, 265(1402): 1185–1189
Cai Y. L., Mai C. L., Yu X., Liao W. B. 2019. Effect of population density on relationship between pre- and postcopulatory sexual traits. Anim Biol, 69(3): 281–292
Chen C., Huang Y. T., Liao W. B. 2016. A comparison of testes size and sperm length in Polypedates megacephalus between two populations at different altitudes. Herpetol J, 26(4): 248–252
Friedmann H. 1927. Testicular asymmetry and sex ratio in birds. Biol Pharm Bull, 52(3): 197–207
Graves G. R. 2004. Testicular volume and asymmetry are age-dependent in black-throated blue warblers (Dendroica caerulescens). Auk, 121(2): 473–485
Hettyey A., Laurila A., Herczeg G., J?nsson K. I., Kovács T., Meril? J. 2005. Does testis weight decline towards the Subarctic? A case study on the common frog, Rana temporaria. Naturwissenschaften, 92(4): 188–192
Jamieson B. G. M., Briskie J. V., Montgomerie R. 2007. Testis size, sperm size and sperm competition. In Reproductive Biology and Phylogeny of Birds. Part A: Phylogeny, Morphology, Hormones, Fertilization, 513–551. Jamieson, B.G.M. (ed.). Enfield, NH: Science Publishers.
Jin L., Mi Z. P., Liao W. B. 2016a. Altitudinal variation in male reproductive investments in a polyandrous frog species (Hyla gongshanensis jingdongensis). Anim Biol, 66(3–4): 289–303
Jin L., Yang S. N., Liao W. B., Lüpold S. 2016b. Altitude underlies variation in the mating system, somatic condition and investment in reproductive traits in male Asian grass frogs (Fejervarya limnocharis). Behav Ecol Sociobiol, 70(8): 1197–1208
Joseph P. N., Emberts Z., Sasson D. A., Miller C. W. 2018. Males that drop a sexually selected weapon grow larger testes. Evolution, 72(1): 113–122
Kempenaers B., Peer K., Vermeirssen E. L. M., Robertson R. J. 2002. Testes size and asymmetry in the tree swallow Tachycineta bicolor: A test of the compensation hypothesis. Avian Sci, 3(2): 115–122
Kimball R. T., Ligon D. J., Merola-Zwartjes M. 1997. Testicular asymmetry and secondary sexual characters in red junglefowl. Auk, 114(2): 221–228
Lake P. E. 1981. Male genital organs. In: King A. S., McLelland J. (Eds.), Form and Function in Birds. Academic Press, London, pp. 1–61.
Liao W. B., Lu X. 2009. Sex recognition by male Andrew’s toad Bufo andrewsi in a subtropical montane region. Behav Process, 82(1): 100–103
Liao W. B., Lu X. 2011a. Proximate mechanisms leading to large male-mating advantage in the Andrew’s toad Bufo andrewsi. Behaviour, 148(9): 1087–1102
Liao W. B., Lu X. 2011b. Male mating success in the Omei treefrog (Rhacophorus omeimontis): the influence of body size and age. Belg J Zool, 141(2): 3–12
Liao W. B., Mi Z. P., Li C. L., Wei S. C., Wu H. 2013a. Sperm traits in relation to male amplexus position in the Omei treefrog Rhacophorus omeimontis, a species with group spawning. J Herpetol, 23(1): 23–27
Liao W. B., Mi Z. P., Zhou C. Q., Jin L., Lou S. L., Han X., Ma J. 2011. Relative testis size and mating systems in anurans: large testis in multiple-male mating in foam-nesting frogs. Anim Biol, 61(2): 225–238
Liao W. B., Xiao W. M., Cai Y. L. 2013b. Within population variation in testis size in the mole-shrew (Anourosorex squamipes). Ital J Zool, 80(2): 204–209
Liao W. B., Huang Y., Zeng Y., Zhong M. J., Luo Y., Lüpold S. 2018. Ejaculate evolution in external fertilizers: Influenced by sperm competition or sperm limitation. Evolution, 72(1): 4–17
Ligon J. D. 1997. A single functional testis as a unique proximate mechanism promoting sex-role reversal in coucals. Auk, 114(4): 800–801
Liu J., Zhou C. Q., Liao W. B. 2014. Neither evidences for the compensation hypothesis nor the expensive-tissue hypothesis in Carassius auratus. Anim Biol, 64(2), 177–187
Liu Y. H., Liao W. B., Zhou C. Q, Mi Z. P, Mao M. 2011. Asymmetry of testes in Guenther’s frog, Hylarana guentheri (Anuar: Ranidae). Asian Herpetol Res, 2(4): 234–239
Mai C. L., Huang J., Liao Q., Liao W. B., Zhang L. X. 2019. Altitude variation in digestive tract length in Feirana quadranus. Asian Herpetol Res, 10(3): 183–189
Mai C. L., Liao J., Zhao L., Liu S. M., Liao W. B. 2017a. Brain size evolution in the frog Fejervarya limnocharis does neither support the cognitive buffer nor the expensive brain framework hypothesis. J Zool, 302(1): 63–72
Mai C. L., Liu Y. H., Jin L., Mi Z. P., Liao W. B. 2017b. Altitudinal variation in somatic condition and investment in reproductive traits in male Yunnan pond frog (Dianrana pleuraden). Zool Anz, 266(1): 189–195
McCullough E. L., Buzatto B. A., Simmons, L. W. 2018. Population density mediates the interaction between pre- and postmating sexual selection. Evolution, 72(4): 893–905
Meril? J., Kruuk L. E. B., Sheldon B. C. 2001. Natural selection on the genetic component of variance in body condition in a wild bird population. J Evol Biol, 14(6): 918–929
Mi Z. P., Liao W. B., Jin L., Lou S. L., Cheng J., Wu H. 2012. Testes asymmetry and sperm length in Rhacophorus omeimontis. Zool Sci, 29(6): 368–372
M?ller A. P. 1989. Ejaculate quality, testes size and sperm production in mammals. Funct Ecol, 3(1): 91–96
M?ller A. P. 1991. Sperm competition, sperm depletion, paternal care, and relative testis size in birds. Am Nat, 137(6): 882–906
M?ller A. P. 1994. Directional selection on directional asymmetry: testes size and secondary sexual characters in birds. Proc R Soc B, 258(1352): 147–151
M?ller A. P., Briskie J. V. 1995. Extra-pair paternity, sperm competition and the evolution of testis size in birds. Behav Ecol Sociobiol, 36(5): 357–365
M?ller A. P., Swaddle J. P. 1997. Asymmetry, Developmental Stability, and Evolution. Oxford University Press, Oxford.
Parker G. A. 1998. Sperm competition and the evolution of ejaculates: Towards a theory base. In: Birkhead T. R., M?ller A. P. (Eds.), Sperm Competition and Sexual Selection. Academic Press, San Diego, CA, pp. 3–54
Rising J. D. 1987. Geographic variation in testis size in savannah sparrows (Passerculus sandwichensis). Wils Bull, 99(1): 63–72
Schulte-Hostedde A. I., Millar J. S. 2004. Intraspecific variation of testis size and sperm length in the yellowpine chipmunk (Tamias amoenus): implications for sperm competition and reproductive success. Behav Ecol Sociobiol, 55(3): 272–277
Simmons L. W., Kotiaho J. S. 2002. Evolution of ejaculates: patterns of phenotypic and genotypic variation and condition dependence in sperm competition traits. Evolution, 56(8): 1622–1631
Tang T., Luo Y., Huang C. H., Liao W. B., Huang W. C. 2018. Variation in somatic condition and testis mass in Feirana quadranus along an altitudinal gradient. Anim Biol, 68(3): 277–288
Wang C., Jin L., Mi Z.P., Liao W.B. 2020. Geographic variation in skin structure in male Andrew’s toad (Bufo andrewsi). Anim Biol, 70(2): 159–174
Wang B., Jiang J. P., Xie F., Li C. 2012. Postglacial colonization of the Qinling Mountains: Phylogeography of the swelled vent frog (Feirana quadranus). PLoS ONE, 7: e41579
Wells K. D. 1977. The social behaviour of anuran amphibians. Anim Behav, 25(25): 666–693
Wright P. L., Wright M. H. 1944. The reproductive cycle of the male Red-winged Blackbird. Condor, 46(2): 46–59
Yu Z. H. 1998. Asymmetrical testicular weights in mammals, birds, reptiles and amphibian. Int J Androl, 21(1): 53–55
Zeng Y., Lou S. L., Liao W. B., Jehle R. 2014. Evolution of sperm morphology in anurans: insights into the roles of mating system and spawning locations. BMC Evol Biol, 14(1): 104
Zhong M. J., Yu X., Liao W. B. 2018. A review for life-history traits variation in frogs especially for anurans in China. Asian Herpetol Res, 9(3): 165–174
Zhou C. Q., Mao M., Liao W. B., Mi Z. P., Liu Y. H. 2011. Testis asymmetry in the dark-spotted frog Rana nigromaculata. Herpetol J, 21(3): 181–185

更新日期/Last Update: 2020-09-25