[1].Effects of Acute Temperature Stress on mRNA Expression of Transferrin in the Yellow Pond Turtle Mauremys mutica[J].Asian Herpetological Research,2020,11(2):124-131.[doi:10.16373/j.cnki.ahr.200006]
 Yufeng WEI#,Yangchun GAO#,Dainan CAO,et al.Effects of Acute Temperature Stress on mRNA Expression of Transferrin in the Yellow Pond Turtle Mauremys mutica[J].Asian Herpetological Research(AHR),2020,11(2):124-131.[doi:10.16373/j.cnki.ahr.200006]

Effects of Acute Temperature Stress on mRNA Expression of Transferrin in the Yellow Pond Turtle Mauremys mutica()

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]



Effects of Acute Temperature Stress on mRNA Expression of Transferrin in the Yellow Pond Turtle Mauremys mutica
Yufeng WEI12# Yangchun GAO2# Dainan CAO2 Yan GE2 Haitao SHI1* Shiping GONG2*
1 Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, Hainan, China
2 Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangdong Academy of Science, Guangzhou 510260, Guangdong, China
acute temperature stress immunity culture model transferrin Mauremys mutica
The yellow pond turtle Mauremys mutica is widely cultured using both greenhouse-reared and outdoor pond-reared models. Individuals from the two models often show different tolerances to dramatic temperature changes caused by extreme weather events. However, the mechanism underlying the difference is unclear. In this study, we found that for greenhouse-reared turtles (GRTs), the expression levels of an immune-related gene for transferrin were significantly different (P < 0.05) between the control group and the acute cold stress (ACS) group for most time points (3 h, 6 h and 48 h), while at two time points (6 h and 12 h) there was a significant difference (P < 0.05) between the control group and the acute heat stress (AHS) group. However, for the outdoor pond-reared turtles (OPTs), we found the opposite pattern: the ACS group showed no significant difference (P > 0.05) from the control group for all time points (3 h, 6 h, 12 h, 24 h and 48 h), whereas two time points (12 h and 24 h) were significantly different (P < 0.05) for the AHS group. Our results indicate that ACS may influence the immunity of GRTs and have no influence on OPTs, whereas AHS may largely affect the immunity of OPTs and have little influence on GRTs. The findings provide insights into the mechanism underlying the different morbidity and mortality rates of turtles from different culture models after extreme weather events.


Barber M. F., Elde N. C. 2014. Escape from bacterial iron piracy through rapid evolution of transferrin. Science, 346(6215): 1362–1366
Bayne C. J., Gerwick L. 2001. The acute phase response and innate immunity of fish. Dev Comp Immunol, 25(8-9): 725–743
Bowden T. J., Thompson K. D., Morgan A. L., Gratacap R. M. L., Nikoskelainen S. 2007. Seasonal variation and the immune response: A fish perspective. Fish Shellfish Immun, 22(6): 695–706
Chen Z., Zhang D., Xing J., Zhan W. 2019a. Effects of temperature on haemocyte and granulocyte counts and expressions of immunity-related genes in haemocytes of Scallop Chlamys farreri after Vibrio anguillarum infection. J Ocean U China, 18(5): 1163–1173
Chen W., Hu X., Jiang L., Qu X., Zhu J., Xu Z., Li S., Zhang, Y. 2019b. Oxidative responses to acute heat stress during hibernation of Asian yellow pond turtle (Mauremys mutica). Acta Ecol Sin, 39(18): 6916–6922 (in Chinese)
Conde-Sieira M., Gesto M., Batista S., Linares F., Villanueva J. L. R., Miguez J. M., Soengas J. L., Valente L. M. P. 2018. Influence of vegetable diets on physiological and immune responses to thermal stress in Senegalese sole (Solea senegalensis). Plos One, 13(3): e0194353
do Vale A., Magarinos B., Romalde J. L., Lemos M. L., Ellis A. E., Toranzo A. E. 2002. Binding of haemin by the fish pathogen Photobacterium damselae subsp. piscicida. Dis Aquat Organ, 48(2): 109–115
Dytham C. 2011. Choosing and using statistics: A biologist’s guide, third ed. Wiley-Blackwell, Hoboken, NJ
Fouz B., Biosca E. G., Amaro C. 1997. High affinity iron-uptake systems in Vibrio damsela: Role in the acquisition of iron from transferrin. J Appl Microbiol, 82(2): 157–167
Gao M., Zhu X., Shi Y., Zhao J., Zhao M. 2012. Recombinant expression and antimicrobial activity analysis of transferrin in Asian yellow pond turtle. Acta Hydrobiol Sin, 36(5): 892–897 (in Chinese)
Gao M., Zhu X., Zhao M., Shi Y., Zhao J. 2011. Cloning and expression pattern analysis of transferrin gene in Yellow pond turtle. Acta Hydrobiol Sin, 35(4): 557–564 (in Chinese)
Hangalapura B. N., Nieuwland M. G. B., Reilingh G. D., Heetkamp M. J. W., van den Brand H., Kemp B., Parmentier H. K. 2003. Effects of cold stress on immune responses and body weight of chicken lines divergently selected for antibody responses to sheep red blood cells. Poultry Sci, 82(11): 1692–1700
Liu H., Takano T., Abernathy J., Wang S., Sha Z., Jiang Y., Terhune J., Kucuktas H., Peatman E., Liu Z. 2010. Structure and expression of transferrin gene of channel catfish, Ictalurus punctatus. Fish Shellfish Immun, 28(1): 159–166
Liu T., Han Y., Chen S., Zhao H. 2019. Genome-wide identification of Toll-like receptors in the Chinese soft-shelled turtle Pelodiscus sinensis and expression analysis responding to Aeromonas hydrophila infection. Fish Shellfish Immun, 87: 478–489
Liu X., Wang Y., Ouyang S., Zhu Y., Li W., Hong X., Xu H., Zhu X. 2018. Evolutionary conservation of transferrin genomic organization and expression characterization in seven freshwater turtles. Biochem Bioph Res Co, 506(4): 874–882
Long X., Wu R., Ma N., Li C., Wu X., Cheng Y. 2017. Comparison of biological indices and nutritional composition of male Chinese soft-shelled turtle, Trionyx sinensis, reared in a greenhouse and eco-pond for Chinese mitten crab, Eriocheir sinensis. J Fish Sci China, 24(1): 100–108 (in Chinese)
Morici L. A., Elsey R. M., Lance V. A. 1997. Effects of long-term corticosterone implants on growth and immune function in juvenile alligators, Alligator mississippiensis. J Exp Zool, 279(2): 156–162
Neves J. V., Wilson J. M., Rodrigues P. N. 2009. Transferrin and ferritin response to bacterial infection: the role of the liver and brain in fish. Dev Comp Immunol, 33(7): 848–857
Pfaffl M. W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res, 29(9): 2002–2007
Qian G., Zhu Q. 2001. Effects of different growth conditions on nutritional components of Chinese soft-shelled turtle (Trionyx sinensis). Acta Nutrimenta Sin, 23(2): 181–183 (in Chinese)
Ray P. P., Maiti B. R. 2001. Adrenomedullary hormonal and glycemic responses to high ambient temperature in the soft-shelled turtle, Lissemys punctata punctata. Gen Comp Endocr, 122(1): 17–22
Ru W., Hua L., Wei Y., Li W., Cao D., Ge Y., Chen H., Lan X., Gong S. 2017. The effect of the Cyp19a1 gene methylation modification on temperature-dependent sex determination of Reeves’ turtle (Mauremys reevesii). Asian Herpetol Res, 8(3): 213–220
Sriboonsan A., Poompuang S., Panprommin D., Areechon N., Srisapoome P. 2008. Cloning, characterization of complementary DNA and expression of transferrin gene of Gunther’s walking catfish (Clarias macrocephalus Gunther). Biosens Bioelectron, 20(7): 1358–1365
Su Y., Wei H., Bi Y., Wang Y., Zhao P., Zhang R., Li X., Li J., Bao J. 2019. Pre-cold acclimation improves the immune function of trachea and resistance to cold stress in broilers. J Cell Physiol, 234(5): 7198–7212
Wang M., Ma J., Shao Q. 2007. Outdoor pond-reared technique of Chinese soft-shell turtle. J Hydroecol, 27(1): 24–26 (in Chinese)
Wang Q., Cheng L., Liu J., Li Z., Xie S., De Silva S. S. 2015a. Freshwater aquaculture in PR China: trends and prospects. Rev Aquacult, 7(4): 283–302
Wang Y., Liu X., Zhao J., Ouyang S., Li W., Zhu J., Zhu Y., Zhu X. 2019. Molecular cloning of ESR1, BMPR1B, and FOXL2 and differential expressions depend on maternal age and size during breeding season in cultured Asian yellow pond turtle (Mauremys mutica). Comp Biochem Phys B, 232: 108–120
Wang Y., Liu Z., Kang Y., Li Z., Shi H., Zhang J., Wang J., Jiang L., Huang J. 2015b. Effects of heat stress on some non-specific immunity parameters in Rainbow trout (Oncorhynchus mykiss). J Agr Biotechnol, 23(5): 634–642 (in Chinese)
Wei C., Zhu X., Chen Y., Zhao W. 2007. Advantages of artifical cultivation and disease contorl in Asian yellow pond turtle. Ocean Fish, 11: 35–37 (in Chinese)
Xu D., Zhou S., Sun L. 2018. RNA-seq based transcriptional analysis reveals dynamic genes expression. profiles and immune-associated regulation under heat stress in Apostichopus japonicus. Fish Shellfish Immun, 78: 169–176
Yang X., Cao Z. 2013. Notes on the transfer of greenhouse-reared Chinese soft-shell turtle to outdoor pond-reared model. Shandong Fisheries, 30(10): 32–33 (in Chinese)
Zhang Z., Chen B., Yuan L., Niu C. 2015. Acute cold stress improved the transcription of pro-inflammatory cytokines of Chinese soft-shelled turtle against Aeromonas hydrophila. Dev Comp Immunol, 49(1): 127–137
Zhao J., Zhang X., Li W., Chen K., Zhang D., Zhu X. 2015. SNP discovery and Characterization from transcriptomes of Asian yellow pond turtle, Mauremys mutica. Conserv Genet Resour, 8(1): 17–21
Zhao M., Shi Y., Zhao J., Zhu X., Chen K., Pan D., Wet C. 2014. Molecular characterization and expression analysis of matrix metalloproteinase 3 in the Asian yellow pond turtle Mauremys mutica. Asian Herpetol Res, 5(1): 38–48
Zhao M., Shi Y., Zhu X., Chen K., Pan D., Wei C. 2012. Molecular characterization and expression analysis of VSIG4 from the Asian yellow pond turtle, Mauremys mutica. Biochem Genet, 50(11-12): 946–958
Zhou F., Wang Y., Du J., Wang Y., He F., He Z. 2014. Analysis of nutritional composition of greenhouse- and outdoor pond-reared Pelodiscus sinensis, Japanese strain. Acta Nutrimenta Sin, 36(2): 201–203 (in Chinese)

更新日期/Last Update: 2020-06-25