[1].Correlation between Climatic Factors and Genetic Diversity of Phrynocephalus forsythii[J].Asian Herpetological Research,2019,10(4):270-275.[doi:10.16373/j.cnki.ahr.190028]
 Yue QI,Wei ZHAO*,Yongjie HUANG,et al.Correlation between Climatic Factors and Genetic Diversity of Phrynocephalus forsythii[J].Asian Herpetological Research(AHR),2019,10(4):270-275.[doi:10.16373/j.cnki.ahr.190028]

Correlation between Climatic Factors and Genetic Diversity of Phrynocephalus forsythii()

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]



Correlation between Climatic Factors and Genetic Diversity of Phrynocephalus forsythii
Yue QI1 Wei ZHAO1* Yongjie HUANG2 Xiaoning WANG1 and Yangyang ZHAO1
1 Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
2 School of Nature Conservation, Beijing Forestry University, Beijing 100083, China
climatic factors genetic diversity selection pressure Phrynocephalus forsythii Tarim Basin
Global climate change is a threat to animals in nearly all biomes and ecosystems, especially for ectotherm whose life activities highly depend on environmental thermal regime. Population genetic diversity which is essential for adaptation to environmental change is a useful index for long-term species survival. In this paper, genetic diversity of eight Phrynocephalus forsythii population which distributed in Tarim Basin, China, were evaluated based on three mtDNA gene and its correlation with environment factors were investigated using RDA. Our result revealed that, the level of genetic diversity of P. forsythii populations was related to its location but there was no significant correlation between genetic distances and geographic distances in P. forsythii. However, we find that mtDNA of P. forsythii was subjected to selection pressure during evolution and population genetic diversity was significantly positively related to variation coefficient of rainfall (VCR) and altitude (AL), while significantly negatively related to longitude (N) and annual average temperature (AAT). Our result supported the previous prediction that excessive ambient heat is a threat to P. forsythii.


Adle K., Zhao E. M. 1993. Society for the Study of Amphibians and Reptiles. Amphibia-Reptilia, 16: 423–424
Cao M. M., Jin Y. T., Liu N. F., Ji W. H. 2012. Effects of the Qinghai–Tibetan Plateau uplift and environmental changes on phylogeographic structure of the Daurian Partridge (Perdix dauuricae) in China. Mol Phylogenet Evol, 65: 823–830
Ceia-Hasse A., Sinervo B., Vicente L., Pereira H. M. 2014. Integrating ecophysiological models into species distribution projections of European reptile range shifts in response to climate change. Ecography, 37: 679–688
Chen Y. J., Wang W., Yang Y. X., Su B., Zhang Y. P., Xiong L. Y., He Z. F., Shu C., Yang D. R. 1997. Genetic Divergence of Cordyceps sinensis as Estimated by Random Amplified Polymorphic DNA Analysis. J Genet Genomics, 24: 410–416
Excoffier L., Laval G., Schneider S. 2005. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol Bioinform, 1: 47–50
Frankham R., Ballou J. D., Briscoe D. A. 2002. Introduction to Conservation Genetics: Glossary. Zoologica Africana, 38: 192–192
Ferrari M., Chi M. T. H. 1998. The nature of naive explanations of natural selection. Int J Sci Educ, 20: 1231–1256
Georgina M. 2003. Preserving the tree of life. Science, 300: 1707–1709
Hancock A. M., Witonsky D. B., Alkorta-Aranburu G., Beall C. M., Gebremedhin A., Sukernik R., Sukernik G., Pritchard J. K., Coop G., Rienzo A. D. 2011. Adaptations to Climate-Mediated Selective Pressures in Humans. Plos Genet, 7(4): e1001375
Huelsenbeck J. P., Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17:754–755
Kottek M., Grieser J., Beck C., Rudolf B., Rubel F. 2006. World Map of the Koppen-Geiger climate classification updated. Meteorol Z, 15: 259–263
Leffler E. M., Bullaughey K., Matute D. R., Meyer W. K., Ségurel L., Venkat A., Andolfatto P., Przeworski M. 2012. Revisiting an old riddle: what determines genetic diversity levels within species? Plos Biol, 10: e1001388
Librado P., Rozas J. 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25: 1451–1452
Lv F. H., Agha S., Kantanen J., Colli L., Stucki S., Kijas J.W., Joost S., Li, M. H., Marsan6 P. A. 2014. Adaptations to Climate-Mediated Selective Pressures in Sheep. Mol Biol Evol, 31: 3324–3343
Mitchell M. W., Locatelli S., Clee P. R. S., Thomassen H. A., Gonder M. K. 2015. Environmental variation and rivers govern the structure of chimpanzee genetic diversity in a biodiversity hotspot. BMC Evol Biol, 15: 1–13
Oliveira E. F., Gehara M., Sao-Pedro V. A., Chen X., Myers E. A., Burbrink F. T., Mesquita D. O., Garda A. A., Colli G. R., Rodrigues M. T., Arias F. J., Zaher H., Santos R. M. L., Costa G. C. 2016. Speciation with gene flow in whiptail lizards from a Neotropical xeric biome. Mol Ecol, 24: 5957–5975
Oostermeijer J. G. B., Luijten S. H., den Nijs J. C. M. 2003. Integrating demographic and genetic approaches in plant conservation. Biol Conserv, 113: 389-398
Posada D. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics, 14: 817–818
Qualls C. P., Andrews R. M. 1999. Cold climates and the evolution of viviparity in reptiles: cold incubation temperatures produce poor-quality offspring in the lizard, Sceloporus virgatus. Biol J Linn Soc, 67: 353–376
Randi E., Alkon P. U. 1994. Genetic Structure of Chukar (Alectoris chukar) Populations in Israel. Auk, 111: 416–426
Sinervo B., Miles D. B.,Wu Y. Y., Kirchoff S., Fausto R., Qi Y. 2018. Climate change, thermal niches, extinction risk and maternal-effect rescue of Toad-headed lizards, Phrynocephalus, in thermal extremes of the Arabian Peninsula to the Tibetan Plateau. Integr Zool, 13: 450–470
Smith B. T., McCormack J. E., Cuervo A. M., Hickerson M. J., Aleixo A., Cadena C. D., Pérez-Emán J., Burney C. W., Xie X. O., Harvey M. G., Faircloth B. C., Glenn T. C., Derryberry E. P., Prejean J., Fields S., Brumfield R. T. 2014. The drivers of tropical speciation. Nature, 515: 406–409
Sun R. Y. 2002. Principles of Animal Ecology. Beijing: Beijing Normal University Publishing Group
Turchetto-Zolet A. C., Pinheiro F., Salgueiro F., Palma-Silva C. 2013. Phylogeographical patterns shed light on evolutionary process in South America. Mol Ecol, 22: 1193–1213
Vralstad T., Myhre E., Schumacher T. 2002. Molecular Diversity and Phylogenetic Affinities of Symbiotic Root-Associated Ascomycetes of the Helotiales in Burnt and Metal Polluted Habitats. New Phytol, 155: 131–148
Wang Y., Zhao L. M., Fang F. J., Liao J. C., Liu N. F. 2013. Intraspecific molecular phylogeny and phylogeography of the Meriones meridianus (Rodentia: Cricetidae) complex in northern China reflect the processes of desertification and the Tianshan Mountains uplift. Biol J Linn Soc, 110: 362–383
Wang Z., Lu H. L., Ma L., Ji X. 2014. Viviparity in high-altitude Phrynocephalus lizards is adaptive because embryos cannot fully develop without maternal thermoregulation. Oecologia, 174: 639-649
Xu W. M., Ci X. Q., Li J. 2017. Parallel effects of environmental properties on genetic diversity and species diversity. Biodiversity Science, 25: 481–489
Yang Z. H. 2007. PAML 4: Phylogenetic Analysis by Maximum Likelihood. Mol Biol Evol, 24: 1586–1591
Ye J. W., Zhang Y., Wang X. J. 2017. Phylogeographic history of broad-leaved forest plants in subtropical China. Acta Ecologica Sinica, 37: 5894–5804
Zhang Q., Niu J. M., Wu S. B., Buyantuyev A., Dong J. J. 2012. Impact of climatic factors on genetic diversity of Stipa breviflora populations in Inner Mongolia. Genet Mol Res, 11: 2081–2093
Zhang Q., Xia L., He J. B., Wu Y. H., Fu J. Z., Yang Q. S. 2010. Comparison of phylogeographic structure and population history of two Phrynocephalus species in the Tarim Basin and adjacent areas. Mol Phylogenet Evol, 57: 1091–1104

更新日期/Last Update: 2019-12-19