[1].Molecular Cloning, Characterization and Sequence Analysis of KCNQ4 in Large Odorous Frog, Odorrana graminea[J].Asian Herpetological Research,2019,10(4):211-218.[doi:10.16373/j.cnki.ahr.190030]
 Ningning LU,Ziwen GU,Zhuo CHEN and Xiaohong CHEN*.Molecular Cloning, Characterization and Sequence Analysis of KCNQ4 in Large Odorous Frog, Odorrana graminea[J].Asian Herpetological Research(AHR),2019,10(4):211-218.[doi:10.16373/j.cnki.ahr.190030]
点击复制

Molecular Cloning, Characterization and Sequence Analysis of KCNQ4 in Large Odorous Frog, Odorrana graminea()
分享到:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

卷:
10
期数:
2019年4期
页码:
211-218
栏目:
出版日期:
2019-12-25

文章信息/Info

Title:
Molecular Cloning, Characterization and Sequence Analysis of KCNQ4 in Large Odorous Frog, Odorrana graminea
文章编号:
AHR-2019-0030
Author(s):
Ningning LU Ziwen GU Zhuo CHEN and Xiaohong CHEN*
College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
Keywords:
Odorrana graminea KCNQ4 cDNA bioinformatics analyses
DOI:
10.16373/j.cnki.ahr.190030
Abstract:
Acoustic communication is essential for anuran survival and reproduction, and masking background noise can affect the effective acoustic communication. The larger odorous frog (Odorrana graminea) inhabits noise montane streams, and it has shown an ultrasound communication adaptation. However, the molecular mechanism underlying their ultrasonic hearing adaptation remains unknown. To characterize and investigate the molecular characteristics and evolution of the high-frequency hearing-sensitive gene (KCNQ4) in O. graminea, termed as OgKCNQ4, the rapid amplification of cDNA ends (RACE) was performed to amplify the cDNA of OgKCNQ4. Different bioinformatics analyses were used to investigate the molecular characteristics. Multiple nucleotide and amino acid sequence alignment were conducted, and phylogenies were reconstructed under the maximum likelihood and Bayesian approaches. The full-length cDNA of OgKCNQ4 was 2065 bp, and the open reading frame (ORF) was 2046 bp encoding for a putative protein with 681 amino acids. The relative molecular weight of OgKCNQ4 was 76.453 kD and the putative PI was 9.69. Secondary structure prediction analyses suggested 42.29% alpha helixes and 43.76% random coils in OgKCNQ4. Gene homology and Phylogenetic analyses revealed the closest relationship between OgKCNQ4 and KCNQ4 of Nanorana parkeri with 96.9% similarity and 95.0% identity. We first determined the full-length cDNA of OgKCNQ4 and the results here could provide foundations for further study on the evolution of KCNQ4 and its relationship to ultrasonic communication in amphibians.

参考文献/References:

Anderson S. R., Wiens J. J. 2017. Out of the dark: 350 million years of conservatism and evolution in diel activity patterns in vertebrates, Evolution, 71: 1944–1959
Arch V. S., Grafe T. U., Narins P. M. 2008. Ultrasonic signaling by a Bornean frog. Biol Lett, 4: 19–22
Campanella J. J., Bitincka L., Smalley J. 2003. MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinform, 4: 29
Edgar R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res, 32: 1792–1797
Fei L., Hu S. Q., Ye C. Y., Huang Y. Z. 2009. Fauna Sinica Amphibia Vol. 3 Anura. Science Press, Beijing
Feng A. S., Narins P. M., Xu C. H., Lin W. Y., Qiu Q., Xu Z. M., Shen J. X., 2006. Ultrasonic communication in frogs. Nature, 440: 333–336
Helaers R., Milinkovitch M. C., 2010. MetaPIGA v2.0: maximum likelihood large phylogeny estimation using the metapopulation genetic algorithm and other stochastic heuristics. BMC Bioinformatics, 11: 379
Heidenreich M., Lechner S. G., Vardanyan V., Wetzel C., Cremers C. W., Leenheer E. M., Aranguez G., Moreno-Pelayo M. A., Jentsch T. J., Lewin G. R., 2012. KCNQ4 K(+) channels tune mechanoreceptors for normal touch sensation in mouse and man. Nat Neurosci, 15: 138–145
Hellsten U., Harland R. M., Gilchrist M. J., Hendrix D., Jurka J., Kapitonov V., Qvcharenko I., Putnam N. H., Shu S. Q., Taher L., Blitz I. L., Blumberg B., Dichmann D. S., Dubchak I., Amaya E., Detter J. C., Fletcher R., Gerhard D. S., Goodstein D., Graves T., Grigoriev I. V., Grimwood J., Kawashima T., Lindquist E., Lucas S. M., Mead P. E., Mitros T., Ogino H., Ohta Y., Poliakov A. V., Pollet N., Robert J., Salamov A., Sater A. K., Schmutz J., Terry A., Vize P. D., Warren W. C., Wells D., Wills A., Wilson R. K., Zimmerman L. B., Zorn A. M., Grainger R., Grammer T., Khokha M. K., Richardson P. M., Rokhsar D. S., 2010. The genome of the western clawed frog Xenopus tropicalis. Science, 328(5978): 633–636
Huelsenbeck J. P., Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17: 754–755
Kharkovets T., Dedek K., Maier H., Schweizer M., Khimich D., Nouvian R., Vardanyan V., Leuwer R., Moser T., Jentsch T. J., 2006. Mice with altered KCNQ4 K+ channels implicate sensory outer hair cells in human progressive deafness. EMBO J, 25: 642–652
Kharkovets T., Hardelin J. P., Safieddine S., Schweizer M., EI-Amraoui A., Petit C., Jentsch T. J., 2000. KCNQ4, a K+ channel mutated in a form of dominant deafness, is expressed in the inner ear and the central auditory pathway. Proc Natl Acad Sci USA, 97: 4333–4338
Kubisch C., Schroeder B. C., Friedrich T., Lutjohann B., EI-Amraoui A., Marlin S., Petit C., Jentsch T. J., 1999. KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell, 96: 437–446
Liu Y., Han N., Franchini L. F., Xu H. H., Pisciottano F., Elgoyhen A. B., Rajan K. E., Zhang S. Y., 2012. The voltage-gated potassium channel subfamily KQT member 4 (KCNQ4) displays parallel evolution in echolocating bats. Mol Biol Evol, 29: 1441–1450
Liu Z., Li S., Wang W., Xu D., Murphy R. W., Shi P., 2011. Parallel evolution of KCNQ4 in echolocating bats. PLoS ONE, 6: e26618
Posada D., Crandall K. A. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics, 14: 817–818
Rambaut A., Drummond A. J. 2007. Tracer v1.4. Retrieved from: http:// beast.bio.ed.ac.uk/Trace
Schwede T., Kopp J., Guex N., Peitsch M. C. 2003. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res, 31:3381–3385
Shen J. X., Xu Z. M., Feng A. S., Narins P. M. 2011. Large odorours frogs (Odorrana graminea) produce ultrasonic calls. J Comp Physiol A, 197:1027–1030
Shen Y. Y., Liang L., Li G. S., Murphy R. W., Zhang Y. P. 2012. Parallel evolution of auditory genes for echolocation in bats and tooted whales. PloS Genet, 8(6): e1002788.
Sun Y. B., Xiong Z. J., Xiang X. Y., Liu S. P., Zhou W. W., Tu X. L., Zhong L., Wang L., Wu D. D., Zhang B. L., Zhu C. L., Yang M. M., Chen H. M., Li F., Zhou L., Feng S. H., Huang C., Zhang G. J., Irwin D., Hillis D. M., Murphy R. W., Yang H. M., Che J., Wang J., Zhang Y. P., 2015. Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes. Proc Natl Acad Sci USA, 112(11): E1257–E1262
Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S., 2011. MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol, 28: 2731–2739
Velez A., Schwartz J .J., Bee M. A. 2013. Anuran acoustic signal perception in noisy environments. In: Brumm H (ed) Animal communication and noise. Springer Heidelberg, New York, 133–186
Webster D. B., Fay R. R., Popper A. N. 1992. The evolutionary biology of hearing. Springer-Verlag, New York
Xu Q., Chang A., Tolia A., Jr D. L. M. 2013. Structure of a Ca(2+)/CaM:Kv7.4 (KCNQ4) B-helix complex provides insight into M current modulation. J Mol Biol, 425: 378–394

更新日期/Last Update: 2019-12-19