[1].Molecular Cloning and Putative Functions of KIFC1 for Acrosome Formation and Nuclear Reshaping during Spermiogenesis in Schlegel’s Japanese Gecko Gekko japonicus[J].Asian Herpetological Research,2019,10(3):158-169.[doi:10.16373/j.cnki.ahr.180087]
 Anchalee AOWPHOL*,Siriporn YODTHONG,Attapol RUJIRAWAN and Kumthorn THIRAKHUPT.Mitochondrial Diversity and Phylogeographic Patterns of Gekko gecko (Squamata: Gekkonidae) in Thailand[J].Asian Herpetological Research(AHR),2019,10(3):158-169.[doi:10.16373/j.cnki.ahr.180087]

Molecular Cloning and Putative Functions of KIFC1 for Acrosome Formation and Nuclear Reshaping during Spermiogenesis in Schlegel’s Japanese Gecko Gekko japonicus()

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]



Mitochondrial Diversity and Phylogeographic Patterns of Gekko gecko (Squamata: Gekkonidae) in Thailand
Anchalee AOWPHOL1* Siriporn YODTHONG1 Attapol RUJIRAWAN1 and Kumthorn THIRAKHUPT2
1 Department of Zoology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
2 Department of Biology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
genetic structure haplotype Gekkonidae mitochondrial DNA human-mediated transport
The Tokay Gecko, Gekko gecko (Linnaeus, 1758) is widely distributed in Asia and there have been concerns regarding locally decreasing populations due to overexploitation for traditional Chinese medicine. Previous studies of the genetic relationships of G. gecko populations included few populations from Thailand. Here we investigated the phylogeographic patterns of G. gecko from different regions in Thailand using mitochondrial cytochrome b sequences. Phylogenetic analyses revealed two lineages: one (Lineage A) comprising populations from Laos, Vietnam, and Thailand; and a second (Lineage B) comprising three genetically distinct groups within Thailand alone. Some Thai populations were found to have both lineages represented within them. Highly significant genetic differentiation (FST) showed geographic population structuring in Lineage B, indicating limited gene flow among groups in Thailand. Although G. gecko has a wide distribution and is well adapted to human habitation, the observed genetic structure could potentially be explained by geographic barriers such as mountain ranges. In Lineage A, our study provided primary phylogeographic evidence for lineage mixture that might be a result of human-mediated transport. Future research should include more extensive sampling across the geographic distribution of G. gecko and a landscape genetics approach could be applied for conservation planning.


Aowphol, A., Thirakhupt, K., Nabhitabhata, J., Voris, H. K. 2006. Foraging ecology of the Tokay gecko, Gekko gecko in a residential area in Thailand. Amphib-Reptil, 27: 491-503
Bauer A. M. 2009. Geckos in traditional medicine: Forensic implications. Appl Herpetol, 6(1): 81–96
Blair C., Jiménez Arcos V. H., Mendez de la Cruz F. R., Murphy R. W. 2013. Landscape genetics of leaf-toed geckos in the tropical dry forest of northern Mexico. PLoS One, 8(2): e57433
Bickford D., Lohman D. J. , Sodhi N. S., NG P. K. L., Meier R., Winker K., Ingram K. K. and Das I. 2007. Cryptic species as a window on diversity and conservation. Trends Ecol Evol, 22: 48–155
Brown R. M., Siler C. D., Grismer L. L., Das I., McGuire J. A. 2012. Phylogeny and cryptic diversification in Southeast Asian flying geckos. Mol Phylogenet Evol, 65(2): 351–361
Caillabet O. S. 2013. The Trade in Tokay Geckos Gekko gecko in South-east Asia: with a case study on Novel Medicinal Claims in Peninsular Malaysia. Petaling Jaya, Selangor, Malaysia: TRAFFIC. 34 pp
Darriba D., Taboada G. L., Doallo R., Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods, 9(8): 772
Dubey S., Sumner J., Pike D. A., Keogh J. S., Webb J. K., Shine R. 2011. Genetic Connectivity among Populations of an Endangered Snake Species from Southeastern Australia (Hoplocephalus bungaroides, Elapidae). Ecol Evol, 1(2): 218–227
Excoffier L., Laval G., Schneider S. 2005. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol Bioinform Online, 1: 47–50
Ferguson, J. W. H. 2002. On the use of genetic divergence for identifying species. Biol J Linn Soc, 75 (4): 509–516
Fu Y. X. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147: 915–925
Grismer L. L., Wood P. L. Jr., Quah E. S. H., Anuar S., Muin M. A., Sumontha M., Norhayati A., Bauer A. M., Wangkulangkul S., Grismer J. L., Pauwels O. S. G. 2012. A phylogeny and taxonomy of the Thai-Malay Peninsula bent-toed geckos of the Cyrtodactylus pulchellus complex (Squamata: Gekkonidae): combined morphological and molecular analyses with descriptions of seven new species. Zootaxa, 3520: 1–55
Gupta A. 2005. The Physical Geography of Southeast Asia. London, England. Oxford University Press, 468 pp
Heinicke M. P., Greenbaum E., Jackman T. R., Bauer A. M. 2012. Evolution of gliding in Southeast Asian geckos and other vertebrates is temporally congruent with dipterocarp forest development. Biol Lett, 8(6): 994–997
Hoehn M., Sarre, S. D., Henle, K. 2018. The tales of two geckos: does dispersal prevent extinction in recently fragmented populations? Mol Ecol 16, 3299–3312
Inger R. F. 1999. Distribution of Amphibians in Southern Asia and Adjacent Islands. 445–482. In Duellman W. E. (Ed), Patterns of Distribution of Amphibians. Baltimore and London, England: The Johns Hopkins University Press
Kongbuntad W., Tantrawatpan C., Pilap W., Jongsomchai K., Chanaboon T., Laotongsan P., Petney T. N., Saijuntha W. 2016. Genetic diversity of the red-spotted tokay gecko (Gekko gecko Linnaeus, 1758) (Squamata: Gekkonidae) in Southeast Asia determined with multilocus enzyme electrophoresis. J Asia Pac Biodivers, 9(1): 63–68
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol, 35: 1547?1549
Lwin K., Neang T., Phimmachak S., Stuart B. L., Thaksintham W., Wogan G., Danaisawat, P., Iskandar D., Yang J., Cai B. 2019. Gekko gecko. The IUCN Red List of Threatened Species 2019: e.T195309A2378260. Retrieved from https://www.iucnredlist.org/species/195309/2378260. 13/04/2019
Lin L. H., Ji X., Diong C. H., Du Y., Lin C. X. 2010. Phylogeography and population structure of the Reevese’s Butterfly Lizard (Leiolepis reevesii) inferred from mitochondrial DNA sequences. Mol Phylogenet Evol, 56(2): 601–607
Lukoschek V., Osterhage J. L., Karns D. R., Murphy J. C., Voris H. K. 2011. Phylogeography of the Mekong mud snake (Enhydris subtaeniata): the biogeographic importance of dynamic river drainages and fluctuating sea levels for semiaquatic taxa in Indochina. Ecol Evol, 1(3): 330–342
McLeod D. S. 2010. Of Least Concern? Systematics of a cryptic species complex: Limnonectes kuhlii (Amphibia; Anura: Dicroglossidae). Mol Phylogenet Evol, 56: 991–1000
Meshaka W. E. Jr., Clouse R. M., McMahon L. 1997. Diet of the tokay gecko (Gekko gecko) in southern Florida. Florida Field Nat, 25(2): 105–107
Miller M. A., Schwartz T., Pickett B. E., He S., Klem E. B., Scheuermann R. H., Passarotti M., Kaufman S., O’Leary M. A. 2015. A RESTful API for Access to Phylogenetic Tools via the CIPRES Science Gateway. Evol Bioinform, 11: 43–48
Nei M. 1987. Molecular evolutionary genetics. New York, USA: Columbia University Press. 512 pp
Nei M., Tajima F. 1981. DNA polymorphism detectable by restriction endonuclease. Genetics, 97: 145–163
Pansook A., Khonsue W., Piyapattanakorn S., Pariyanonth P. 2012. Phylogenetic Relationships among Holobatrachus rugulosus in Thailand as Inferred from Mitochondrial DNA Sequence of the Cytochrome-b Gene (Amphibian, Anura, Dicroglossidae). Zool Sci, 29: 54–59
Pincheira-Donoso D., Bauer A. M., Meiri S., Uetz P. 2013. Global taxonomic diversity of living reptiles. PLoS One, 8(3): e59741
Qin X. M., Li H. M., Zeng Z. H., Zeng D. L., Guan Q. X. 2012. Genetic variation and differentiation of Gekko gecko from different populations based on mitochondrial cytochrome b gene sequences and karyotypes. Zool Sci, 29(6): 384–389
Qin X. M., Zeng Z. H., Liang Y. N. 2007. Genetic variation and differentiation of Gekko gecko from different population. Zool Res, 28(3): 286–290 (in Chinese)
Racey A. 2009. Mesozoic red bed sequences from SE Asia and the significance of the Khorat Group of NE Thailand. Geological Society, London, Special Publications, 315(1): 41–67
Rambaut A., Drummond A. J., Xie D., Baele G., Suchard M. A. 2018. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst Biol, 67(5): 901?904
Rocha J. C. 2015. Occurrence of the Tokay Gecko, Gekko gecko (Linnaeus 1758) (Squamata, Gekkonidae), an exotic species in southern Brazil. Herpetol Notes, 8: 8–10
Roger A. R., Harpending H. 1992. Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol, 9(3): 552–569
Ro?sler H. 2001. Studien am Tokeh: 1. Gekko gecko azhari Mertens, 1955 (Sauria: Gekkonidae). Gekkota, 3: 33–46
Ro?sler H. 2005. Studien am Tokeh: 2. Intraspezifische Variation der su?dostasiatischen Populationen von Gekko gecko (Linnaeus, 1758) (Sauria: Gekkonidae). Gekkota, 5: 65–149
R?sler H., Bauer A. M., Heinicke M. P., Greenbaum E., Jackman T., Nguyen T. Q., Ziegler T. 2011. Phylogeny, taxonomy, and zoogeography of the genus Gekko Laurenti, 1768 with the revalidation of G. reevesii Gray, 1831 (Sauria: Gekkonidae). Zootaxa, 2989: 1–50
Rozas J., Ferrer-Meta A. Sánchez-DelBarrio J. C., Guirao-Rico S., Librado P., Ramos-Onsins S. E., Sánchez-Gracia A. 2017. DnaSP v6: DNA Sequence Polymorphism Analysis of Large Database. Mol Biol Evol, 34: 3299?3302
Saijuntha W., Khumkratok S., Wongpakam K., Thanonkeo S., Senakhun C., Appamaraka S., Yodsiri S., Thongnetr W., Pilap W., Kongbuntad W., Tawong W., Agatsuma T., Petney T. N., Tantrawatpan C. 2017. Genetic diversity and population structure of blue-crested lizard, Calotes mystaceus Duméril & Bibron, 1837 (Squamata: Agamidae) in Thailand. J Genet, 96(2): 377–382
Santos J. L., Z?agar A., Dras?ler K., Rato C., Ayres C., Harris D. J., Carretero M. A., Salvi D. 2018. Phylogeographic evidence for multiple long-distance introductions of the common wall lizard associated with human trade and transport. Amphib Reptil, DOI: 10.1163/15685381-20181040
Siriwut W., Edgecombe G. D., Sutcharit C., Panha S. 2015. The Centipede Genus Scolopendra in Mainland Southeast Asia: Molecular Phylogenetics, Geometric Morphometrics and External Morphology as Tools for Species Delimitation. PLoS One, 10(8): e0135355.
Short K. H., Petren K. 2011. Fine-Scale Genetic Structure Arises during Range Expansion of an Invasive Gecko. PLoS One, 6(10): e26258
Siler C. D., Oliveros C. H., Santanen A., Brown R. M. 2013. Multilocus phylogeny reveals unexpected diversification patterns in Asian Wolf Snakes (genus Lycodon). Zool Scr, 42(3): 262–277
Smith M. A. 1935. The Fauna of British India, including Ceylon and Burma. Reptilia and Amphibia.Vol. II. Sauria. London: Taylor and Francis Ltd. 440 pp
Stuart B. L., Inger R. F., Voris H. K. 2006. High level of cryptic species diversity revealed by sympatric lineages of Southeast Asian forest frogs. Biol Lett, 2: 470–474
Sodhi N. S., Koh L. P., Brook B. W., Ng P. K. L. 2004. Southeast Asian biodiversity: an impending disaster. Trends Ecol Evol, 19(12): 654–660?
Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123: 585–595
Templeton A. R., Robertson R. J., Brisson J., Strasburg J. 2001. Disrupting evolutionary processes: The effect of habitat fragmentation on collared lizards in the Missouri Ozarks. PNAS, 98(10): 5426–5432
Trifinopoulos J., Nguyen L. T., von Haeseler A., Minh B.Q. 2016. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res, 44(W1): W232?W235
Uetz P. 2000. How many reptiles species? Herpetol Rev, 31(1): 13–15
Uetz P., Freed P., Ho?ek J. (eds.). 2018. The Reptile Database. Retrieved from http://www.reptile-database.org 13/11/2018
Wang G., Gong S., Jiang L., Peng R., Shan X., Zou D., Yang C., Zou F. 2013. Genetic variability of the tokay gecko based on mitochondrial and nuclear DNA. Mitochondrial DNA, 24(5): 518–527
Wang G., Peng Q., Wu L., Wang T., Peng R., Li L., Zeng X., Zou F. 2012. Nuclear and mitochondrial DNA reveals significant intraspecific genetic differentiation of tokay gecko in southern China and northern Vietnam. J Zool, 287(3): 215–223
Weterings R., Vetter K. C. 2018. Invasive house geckos (Hemidactylus spp.): their current, potential and future distribution. Curr Zool, 64(5): 559–573
Woodruff D. S. 2010. Biogeography and conservation in Southeast Asia: how 2.7 million years of repeated environmental fluctuations affect today’s patterns and the future of the remaining refugial-phase biodiversity. Biodivers Conserv, 19: 919–941
Yodthong S., Siler C. D., Prasankok P., Aowphol A. 2014. Phylogenetic Patterns of the Southeast Asian Tree frog Chiromantis hansenae in Thailand. Asian Herpetol Res, 5(3): 179–196
Yu X., Peng Y., Aowphol A., Ding L., Brauth S. E., Tang Y. Z. 2011. Geographic variation in the advertisement calls of Gekko gecko in relation to variations in morphological features: Implications for regional population Differentiation. Ethol Ecol Evol, 23(3): 1–19
Zhang Y., Chen C., Li L., Zhao C., Chen W., Huang Y. 2014. Insights from ecological niche modeling on the taxonomic distinction and niche differentiation between the black-spotted and red-spotted tokay geckoes (Gekko gecko). Ecol Evol, 4(17): 3383–94
Zhang Y. Y., Mo X. C., Zeng W. M., Hu D. N. 2006. A molecular phylogeny of red Tokay and black Tokay (Gekko gecko) based on mitochondrial 12S rRNA gene sequences. Guangxi Med J, 28: 793–796

更新日期/Last Update: 2019-09-25