[1].Evaluating the Importance of Environmental Variables on Spatial Distribution of Caspian cobra Naja oxiana (Eichwald, 1831) in Iran[J].Asian Herpetological Research,2019,10(2):129-138.[doi:10.16373/j.cnki.ahr.180063]
 Elmira KAZEMI,Mohammad KABOLI*,Rasoul KHOSRAVI and Nematollah KHORASANI.Evaluating the Importance of Environmental Variables on Spatial Distribution of Caspian cobra Naja oxiana (Eichwald, 1831) in Iran[J].Asian Herpetological Research(AHR),2019,10(2):129-138.[doi:10.16373/j.cnki.ahr.180063]

Evaluating the Importance of Environmental Variables on Spatial Distribution of Caspian cobra Naja oxiana (Eichwald, 1831) in Iran()

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]



Evaluating the Importance of Environmental Variables on Spatial Distribution of Caspian cobra Naja oxiana (Eichwald, 1831) in Iran
Elmira KAZEMI1 Mohammad KABOLI2* Rasoul KHOSRAVI3 and Nematollah KHORASANI2
1 Department of Environment, Faculty of Natural Recources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Department of Environmental Science, Faculty of Natural Resources, University of Tehran, Karaj, Iran
3 Department of Natural Resources and Environmental Engineering, School of Agriculture, Shiraz University, Shiraz, Iran
Naja oxiana MaxEnt habitat suitability landscape connectivity distribution modelling
Over recent years, the population of Caspian cobra Naja oxiana has declined in its distribution range in Iran due to habitat destruction and overhunting. Consequently, their small and isolated populations in fragmented landscapes are facing genetic and demographic threats. Evaluating the spatial distribution pattern of Naja oxiana, identifying core habitat patches and improving landscape connectivity among the patches have a significant role in the long-term survival of the species. This study predicts the spatial distribution map of the Caspian cobra considering the factors affecting the predictive power of the distribution models, including sampling bias in presence points, correct selection of background locations, and input model parameters. The sampling bias in presence points was removed using spatial filtering. Several models were run using 19 environmental variables that eventually led to the selection of the effective habitat variables and best MaxEnt distribution model. We also used an ensemble model (EM) of habitat suitability methods to predict the potential habitats of the species. Topographical roughness, shrublands, average annual precipitation, and sparse rangeland with a density of ≤ 20% had the most effect on the spatial distribution of Caspian cobra. The evaluation of models confirmed that the EM has more predictive performance than MaxEnt in predicting the distribution of Naja oxiana.


Abade L., Macdonald D. W., Dickman A. J. 2014. Using landscape and bioclimatic features to predict the distribution of lions, leopards and spotted hyaenas in Tanzania’s Ruaha landscape. PLoS One, 9: e96261
Ahmadi M., Nezami Balouchi B., Jowkar H., Hemami M. R., Fadakar D., Malakouti-Khah S., Ostrowski S. 2017. Combining landscape suitability and habitat connectivity to conserve the last surviving population of cheetah in Asia. Divers Distrib, 23: 592–603
Araújo M. B., New M. 2007. Ensemble forecasting of species distributions. Trends Ecol Evol, 22: 42–47
Araújo M. B., Alagador D., Cabeza M., Nogués-Bravo D., Thuiller W. 2011. Climate change threatens European conservation areas. Ecol Lett, 14: 484–492
Barve N., Barve V., Jiménez-Valverde A., Lira-Noriega A., Maher S. P., Peterson A. T., Soberón J., Villalobos F. 2011. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol Model, 222: 1810–1819
Bellamy C., Scott C., Altringham J. 2013. Multiscale, presence–only habitat suitability models: Fine–resolution maps for eight bat species. J Appl Ecol, 50: 892–901
Boria R. A., Olson L. E., Goodman S. M., Anderson R. P. 2014. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol Model, 275: 73–77
Brown J. L. 2014. SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol Evol, 5: 694–700
Carroll C., Dunk J. R., Moilanen A. 2010. Optimizing resiliency of reserve networks to climate change: Multispecies conservation planning in the Pacific Northwest, USA. Glob Chang Biol, 16: 891–904
Darvish J., Rastegar-Pouyani E. 2012. Biodiversity conservation of reptiles and mammals in the Khorasan provinces, northeast of Iran. Prog Biol Sci, 2: 95–109
DeLeo J. M. 1993. Receiver operating characteristic laboratory (ROCLAB): Software for developing decision strategies that account for uncertainty. In Uncertainty Modeling and Analysis, 1993. Proceedings of the Second International Symposium on Uncertainty Modelling and Analysis, 318–325
Elith J., Graham C. H., Anderson R. P., Dudík M., Ferrier S., Guisan A., Hijmans R. J., Huettmann F., Leathwick J. R., Lehmann A., Li J., Lohmann L. G., Loiselle B. A., Manjon G., Moritz C., Nakamura M., Nakazawa Y., Overton J. M., Peterson A. T., Phillips S. J., Richardson K., Scachetti-Pereira R., Schapire R. E., Soberon J., Williams S., Wisz M. S., Zimmermann N. E. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29: 129–151
Evans J. S., Oakleaf J., Cushman S. A., Theobald D. 2014. An ArcGIS toolbox for surface gradient and geomorphometric modeling. Version 2.0-0. Laramie, WY
Fourcade Y., Engler J. O., Rodder D., Secondi J. 2014. Mapping species distributions with MAXENT using a geographically biased sample of presence data: A performance assessment of methods for correcting sampling bias. PloS One,? 9: e97122
Hijmans R. J., Phillips S., Leathwick J., Elith J. 2013. Dismo: Species distribution modeling. R package version 0.9-3
Jueterbock A., Smolina I., Coyer J. A., Hoarau G. 2016. The fate of the Arctic seaweed Fucus distichus under climate change: An ecological niche modeling approach. Ecol Evol, 6: 1712–1724
Hof A. R., Jansson R., Nilsson C. 2012. The usefulness of elevation as a predictor variable in species distribution modelling. Ecol Model, 246: 86–90
Khanum R., Mumtaz A.S., Kumar S. 2013. Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling. Acta Oecol, 49: 23–31
Khosravi R., Hemami M. R., Cushman S. A. 2018. Multispecies assessment of core areas and connectivity of desert carnivores in central Iran. Divers Distrib, 24: 193–207
Kittle A. M., Watson A. C., Cushman S. A., Macdonald D. W. 2018. Forest cover and level of protection influence the island-wide distribution of an apex carnivore and umbrella species, the Sri Lankan leopard (Panthera pardus kotiya). Biodivers Conserv, 27: 235–263
Kramer-Schadt S., Niedballa J., Pilgrim J. D., Schroder B., Lindenborn J., Reinfelder V., Stillfried M., Heckmann I., Scharf A. K., Augeri D. M., Cheyne S. M. 2013. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers Distrib, 19:1366–1379
Kujala H., Araújo M. B., Thuiller W., Cabeza M. 2011. Misleading results from conventional gap analysis–Messages from the warming north. Biol Conserv, 144: 2450–2458
Kularatne S. A. M., Senanayake N. 2014. Venomous snake bites, scorpions, and spiders. Handb Clin Neurol, 120: 987–1001
Liu C., White M., Newell G. 2013. Selecting thresholds for the prediction of species occurrence with presence–only data. J Biogeogr, 40: 778–789
Marmion M., Parviainen M., Luoto M., Heikkinen R. K., Thuiller W. 2009. Evaluation of consensus methods in predictive species distribution modelling. Divers Distrib, 15: 59–69
Niebuhr B. B., Wosniack M. E., Santos M. C., Raposo E. P., Viswanathan G. M., Da Luz M. G., Pie M. R. 2015. Survival in patchy landscapes: The interplay between dispersal, habitat loss and fragmentation. Sci Rep, 5: 11898
Phillips S. J., Anderson R. P., Schapire R. E. 2006. Maximum entropy modeling of species geographic distributions. Ecol Model, 190: 231–259
Phillips S. J., Dudík M., Elith J., Graham C. H., Lehmann A., Leathwick J., Ferrier S. 2009. Sample selection bias and presence–only distribution models: Implications for background and pseudo–absence data. Ecol Appl, 19: 181–197
Pook C. E., Joger U., Stümpel N., Wüster W. 2009. When continents collide: phylogeny, historical biogeography and systematics of the medically important viper genus Echis (Squamata: Serpentes: Viperidae). Mol Phylogenet Evol, 53: 792–807
Ripple W. J., Estes J. A., Beschta R. L., Wilmers C. C., Ritchie E. G., Hebblewhite M., Berger J., Elmhagen B., Letnic M., Nelson M. P., Schmitz O. J. 2014. Status and ecological effects of the world’s largest carnivores. Science, 343: 1241484
Rodriguez-Soto C., Monroy-Vilchis O., Maiorano L., Boitani L., Faller J. C., Briones M. A., Nunez R., Rosas-Rosas O., Ceballos G., Falcucci A. 2011. Predicting potential distribution of the jaguar (Panthera onca) in Mexico: Identification of priority areas for conservation. Divers Distrib, 17: 350–361
Veloz S. D. 2009. Spatially autocorrelated sampling falsely inflates measures of accuracy for presence–only niche models. J Biogeogr, 36: 2290–2299
Wallach V., Wüster W., Broadley D. G. 2009. In praise of subgenera: Taxonomic status of cobras of the genus Naja Laurenti (Serpentes: Elapidae). Zootaxa, 2236: 26–36
Warren D. L., Seifert S. N. 2011. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl, 21: 335–342
WCH Clinical Toxinology Resource. 2012. [Available from: http://www.toxinology.com/fusebox]
Wiens J. A. 2001. The landscape concept of dispersal. 96–109. In Clobert J., Danchin E., Dhondt A. A., Nichols J. D. (Eds.), Dispersal. New York: Oxford University Press, 452 pp
Wüster W. 1990. Population evolution of the Asiatic cobra (Naja naja) species complex. Ph.D Thesis. University of Aberdeen
Wüster W., Thorpe R. S. 1989. Population affinities of the Asiatic cobra (Naja naja) species complex in south-east Asia: Reliability and random resampling. Biol J Linn Soc, 36: 391–409
Wüster W., Crookes S., Ineich I., Mané Y., Pook C. E., Trape J. F., Broadley D. G. 2007. The phylogeny of cobras inferred from mitochondrial DNA sequences: Evolution of venom spitting and the phylogeography of the African spitting cobras (Serpentes: Elapidae: Naja nigricollis complex). Mol Phylogenet Evol, 45: 437–453
Young A. G., Clarke G. M., Cowlishaw G. 2000. Genetics, demography and viability of fragmented populations. Cambridge: Cambridge University Press
Zarco-González M. M., Monroy-Vilchis O., Alaníz J. 2013. Spatial model of livestock predation by jaguar and puma in Mexico: Conservation planning. Biol Conserv, 159: 80–87

更新日期/Last Update: 2019-06-25