[1].Microhabitat Segregation of Parapatric Frogs in the Qinling Mountains[J].Asian Herpetological Research,2019,10(1):48-55.[doi:10.16373/j.cnki.ahr.180078]
 Shengnan YANG,Jianping JIANG,Zhenhua LUO,et al.Microhabitat Segregation of Parapatric Frogs in the Qinling Mountains[J].Asian Herpetological Research(AHR),2019,10(1):48-55.[doi:10.16373/j.cnki.ahr.180078]
点击复制

Microhabitat Segregation of Parapatric Frogs in the Qinling Mountains()
分享到:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

卷:
10
期数:
2019年1期
页码:
48-55
栏目:
出版日期:
2019-03-25

文章信息/Info

Title:
Microhabitat Segregation of Parapatric Frogs in the Qinling Mountains
文章编号:
AHR-2018-0078
Author(s):
Shengnan YANG12 Jianping JIANG1 Zhenhua LUO3 Xin YANG1 Xiaoyi WANG1 Wenbo LIAO2 and Junhua HU1*
1 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
2 Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan 637009, China
3 School of Life Sciences, Central China Normal University, Wuhan 430079, China
Keywords:
coexistence contact zone microhabitat utilization niche segregation Feirana Qinling Mountains
DOI:
10.16373/j.cnki.ahr.180078
Abstract:
Coexistence mechanisms for species with similar ecological traits and overlapping geographic distributions are basic questions in ecology and evolutionary biology. Specific habitat requirements often limit distribution range as well as facilitate partitioning resource utilization in ecological similar species. Understanding niche segregation and differences in microhabitat utilization can contribute to identifying coexistence mechanisms between parapatric species. Feirana quadranus and F. taihangnica are two closely related frog species with parapatric geographic ranges and an elongated contact zone within the Qinling Mountains, which is an important watershed for East Asia. Here, we analysed the difference in microhabitat utilization between the two frog species and explored the key ecological factors that induced their microhabitat differentiation based on quadrats sampled in the contact zone. Our comparison of twenty environmental variables showed that both species used microhabitats with alkalescent warm water and gentle slope conditions. The principal component analysis indicated that climate-related variables, vegetation conditions, and river width were the important factors for microhabitat utilization of these species. These findings contribute to our understanding on the coexistence mechanisms of these two related and parapatric Asian mountain frog species. This study can also be helpful for identifying target habitats to conduct conservation actions and management strategies effectively in the face of environmental changes.

参考文献/References:

Barber N. A., Marquis R. J., Tori W. P. 2008. Invasive prey impacts the abundance and distribution of native predators. Ecology, 89: 2678–2683
Benard M. F. 2015. Warmer winters reduce frog fecundity and shift breeding phenology, which consequently alters larval development and metamorphic timing. Glob Change Biol, 21: 1058–1065
Bishop P. J., Angulo A., Lewis J. P., Moore R. D., Rabb G. B., Moreno J. G. 2012. The amphibian extinction crisis - what will it take to put the action into the Amphibian Conservation Action Plan? Sapiens, 5: 97–111
Buckley L. B., Jetz W. 2007. Environmental and historical constraints on global patterns of amphibian richness. Proc R Soc B-Biol Sci, 274: 1167–1173
Cadotte M. W., Tucker C. M. 2017. Should environmental filtering be abandoned? Trends Ecol Evol, 32: 429–437
Cain J. W., Krausman P. R., Morgart J. R., Jansen B. D., Pepper M. P. 2008. Responses of desert bighorn sheep to removal of water sources. Wildl Monogr, 171: 1–32
Chailleux A. 2001, Abiotic vs. biotic influences on habitat selection of coexisting species: climate change impacts? Ecology, 82: 175–188
Cloyed C. S., Eason P. K. 2017. Niche partitioning and the role of intraspecific niche variation in structuring a guild of generalist anurans. R Soc Open Sci, 4: 170060
Davidson-Watts I., Walls S., Jones G. 2006. Differential habitat selection by Pipistrellus pipistrellus and Pipistrellus pygmaeus identifies distinct conservation needs for cryptic species of echolocating bats. Biol Conserv, 133: 118–127
Doligez B., Clobert J. 2002. Public information and breeding habitat selection in a wild bird population. Science, 297: 1168–1170
Ficetola G. F., Lunghi E., Canedoli C., Padoaschioppa E., Pennati R., Manenti R. 2018. Differences between microhabitat and broad-scale patterns of niche evolution in terrestrial salamanders. Sci Rep, 8: 10575
Ficetola G. F., Mazel F., Thuiller W. 2017. Global determinants of zoogeographical boundaries. Nature Ecol Evol, 1: 89
Fei L., Hu S., Ye C., Huang Y. 2009. Fauna Sinica. Amphibia. Vol. 3. Anura Ranidae. Beijing, China: Science Press
Graham C. H., Ron S. R., Santos J. C., Schneider C. J., Moritz C. 2004. Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution, 58: 1781–1793
Hu J., Broennimann O., Guisan A., Wang B., Huang Y., Jiang J. 2016. Niche conservatism in Gynandropaa frogs on the southeastern Qinghai-Tibetan Plateau. Sci Rep, 6: 32624
Hu J., Jiang J. 2018. Inferring ecological explanations for biogeographic boundaries of parapatric Asian mountain frogs. BMC Ecol, 18: 3
Jiang J., Xie F., Zhang C., Cai L., Li C., Wang B., Li J., Wang J., Hu J., Wang Y., Liu J. 2016 Assessing the threat status of amphibians in China. Biodiv Sci, 24: 588–597
Leibold M. A., Mcpeek M. A. 2006. Coexistence of the niche and neutral perspectives in community ecology. Ecology, 87: 1399–1410
Li, Y., Cohen J. M., Rohr J. R. 2013. Review and synthesis of the effects of climate change on amphibians. Integr Zool, 8: 145–161
Loucks C. J., Zhi L., Dinerstein E., Dajun W., Dali F., Hao W. 2003. The giant pandas of the Qinling Mountains, China: a case study in designing conservation landscapes for elevational migrants. Conserv Biol, 17: 558–565
Luo Z., Liu B., Liu S., Jiang Z., Halbrook R. S. 2014. Influences of human and livestock density on winter habitat selection of Mongolian gazelle (Procapra gutturosa). Zool Sci, 31: 20–30
Matthiopoulos J., Fieberg J., Aarts G., Beyer H. L., Morales J. M., Haydon D. T. 2015. Establishing the link between habitat selection and animal population dynamics. Ecol Monogr, 85: 413–436
Mayfield M. M., Levine J. M. 2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol Lett, 13: 1085–1093
Michalko R., Pekár S. 2015. Niche partitioning and niche filtering jointly mediate the coexistence of three closely related spider species (Araneae, Philodromidae). Ecol Entomol, 40: 22–33
Morosinotto C., Thomson R. L., Korpimctki E. 2010. Habitat selection as an antipredator behaviour in a multi-predator landscape: all enemies are not equal. J Anim Ecol, 79: 327–333
Morris D. W. 1996. Coexistence of specialist and generalist rodents via habitat selection. Ecology, 77: 2352–2364
Morris D. W. 2003. Toward an ecological synthesis: a case for habitat selection. Oecologia, 136: 1–13
Odum E. P. 1983. Basic Ecology. Philadelphia, USA: Saunders College Press
Pita R., Mira A., Beja P. 2011. Assessing habitat differentiation between coexisting species: the role of spatial scale. Acta Oecol -Int J Ecol, 37: 124–132
Rosenzweig M. L. 1981. A theory of habitat selection. Ecology, 62: 327–335
Siemers B. M., Schnitzler H. U. 2004. Echolocation signals reflect niche differentiation in five sympatric congeneric bat species. Nature, 429: 657–661
Silvano D. L., Segalla M. V. 2010. Conservation of Brazilian Amphibians. Conserv Biol, 19: 653–658
Violle C., Nemergut D. R., Pu Z., Jiang L. 2011. Phylogenetic limiting similarity and competitive exclusion. Ecol Lett, 14: 782–787
Wang B., Jiang J., Xie F., Chen X., Dubois A., Liang G., Wagner S. 2009. Molecular phylogeny and genetic identification of populations of two species of Feirana frogs (Amphibia: Anura, Ranidae, Dicroglossinae, Paini) endemic to China. Zool Sci, 26: 500–509
Wang B., Jiang J., Xie F., Li C. 2012. Postglacial colonization of the Qinling Mountains: phylogeography of the Swelled Vent frog (Feirana quadranus). PLoS One, 7: e41579
Wang B., Jiang J., Xie F., Li C. 2013. Phylogeographic patterns of mtDNA variation revealed multiple glacial refugia for the frog species Feirana taihangnica endemic to the Qinling Mountains. J. Mol Evol, 76: 112–128
Warren D. L., Cardillo M., Rosauer D. F., Bolnick D. I. 2014. Mistaking geography for biology: inferring processes from species distributions. Trends Ecol Evol, 29: 572–580
Wells K. D. 2007. The ecology and behavior of amphibians. Chicago, USA: The University of Chicago Press
Wiens J. A. 1989. Spatial scaling in ecology. Funct Ecol, 3: 385–397
Yang X., Wang B., Hu J., Jiang J. 2011. A new species of the Genus Feirana (Amphibia: Anura: Dicroglossidae) from the Western Qinling Mountains of China. Asian Herpetol Res, 2: 72–86
Zhang Y., Wang Y., Phillips N., Ma K. P., Li J., Wang W. 2017. Integrated maps of biodiversity in the Qinling Mountains of China for expanding protected areas. Biol Conserv, 210: 64–71

更新日期/Last Update: 2019-03-25