[1].Identifying Intraspecific Variation in Venom Yield of Chinese Cobra (Naja atra) from Ten Populations in Mainland China[J].Asian Herpetological Research,2019,10(1):32-40.[doi:10.16373/j.cnki.ahr.180041]
 Jianfang GAO*,Yin YIN,Yanfu QU,et al.Identifying Intraspecific Variation in Venom Yield of Chinese Cobra (Naja atra) from Ten Populations in Mainland China[J].Asian Herpetological Research(AHR),2019,10(1):32-40.[doi:10.16373/j.cnki.ahr.180041]

Identifying Intraspecific Variation in Venom Yield of Chinese Cobra (Naja atra) from Ten Populations in Mainland China()

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]



Identifying Intraspecific Variation in Venom Yield of Chinese Cobra (Naja atra) from Ten Populations in Mainland China
Jianfang GAO1* Yin YIN1 Yanfu QU2 Jin WANG2 Longhui LIN1 Hongliang LU1 and Xiang JI2
1 Hangzhou Key Laboratory for Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
2 Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, Jiangsu, China
Naja atra venom yield intraspecific variation snakebite
Detailed information on venom yield is helpful in preparing antivenoms and treating snakebites, but such information is lacking for many species of venomous snakes. The Chinese cobra (Naja atra) is a large sized, venomous snake commonly found in southeastern China, where it causes a heavy burden of snakebites. To examine the effects of various factors (morphology, sex, age, season, and geographical origin) on the venom yield in this snake, we collected venom samples of 446 individuals (426 adults and 20 neonates) from 10 populations of N. atra over an eight-year period. We used two variables, lyophilized venom mass (venom yield) and solid content of venom (% solids), to quantify the venom yield. We used linear regression analysis to check if venom yield was related to morphological factors, one-way ANOVA and one-way ANCOVA to detect the sexual, ontogenetic, and geographic variation in venom yield, and repeated-measures ANOVA to examine seasonal shifts in venom yield. Our results indicate that venom yield of N. atra is positively related to the morphological traits examined, with male snakes expelling more venom than females. Venom yield in N. atra was age-related, with elder snakes always expelling more venom than younger ones. Geographic variation in venom yield was also observed, while seasonal variation was not. The solid content of venom was lower in males than in females, but this was not related to morphology, season, age, or geography. Our findings suggest that venom yield in N. atra is influenced by multiple factors, as well as by the interactions among these factors.


Abdel-Aal A., Abdel-Baset A. 2010. Venom yield and toxicities of six Egyptian snakes with a description of a procedure for estimating the amount of venom ejected by a single snake bite. Sci J King Faisal Univ, 11: 169–184
Cascardi J., Young B. A., Husic H. D., Sherma J. 1999. Protein variation in the venom spat by the red spitting cobra, Naja pallida (Reptilia: Serpentes). Toxicon, 37: 1271–1279
Chanhome L., Khow O., Puempunpanich S., Sitprija V., Chaiyabutr N. 2009. Biological characteristics of the Bungarus candidus venom due to geographical variation. J Cell Anim Biol, 3: 93–100
Cheng X. X. 1989. Preparation, identification and quality control of snake venom. Chin Med Mat, 12: 30
Daltry J. C., Wüster W., Thorpe R. S. 1996. Diet and snake venom evolution. Nature, 379: 537–540
Dissanayake, D. S., Rajapakse, R. P. V. J., Kularatne, S. A. M. 2015. An evaluation on factors influencing venom yield in spectacled cobra (Naja naja) in Sri Lanka. International Postgraduate Research Conference
Furtado M. F., Travaglia-Cardoso S. R., Rocha M. M. 2006. Sexual dimorphism in venom of Bothrops jararaca (Serpentes: Viperidae). Toxicon, 48: 401–410
Gao J. F. 2010. Identifying factors for intra-specific variation in venom yield, composition and enzymatic activity of venomous snakes. Ph. D. Thesis. Nanjing Normal University
Gao J. F., Qu Y. F., Zhang X. Q., Ji X. 2011. Within-clutch variation in venoms from hatchlings of Deinagkistrodon acutus (Viperidae). Toxicon, 57: 970–977
Gao J. F., Wang J., He Y., Qu Y. F., Lin L. H., Ma X. M., Ji X. 2014. Proteomic and biochemical analyses of short-tailed pit viper (Gloydius brevicaudus) venom: age-related variation and composition–activity correlation. J Proteomics, 105: 307–322
Gibbs H. L., Sanz L., Chiucchi J. E., Farrell T. M., Calvete J. J. 2011. Proteomic analysis of ontogenetic and diet-related changes in venom composition of juvenile and adult Dusky Pigmy rattlesnakes (Sistrurus miliarius barbouri). J Proteomics, 74: 2169–2179
He Y., Gao J. F., Lin L. H., Ma X. M., Ji X. 2014. Age-related variation in snake venom: evidence from two snakes (Naja atra and Deinagkistrodon acutus) in southeastern China. Asian Herpetol Res, 5: 119–127
Huang H. W., Liu B. S., Chien K. Y., Chiang L. C., Huang S. Y., Sung W. C., Wu W. G. 2015. Cobra venom proteome and glycome determined from individual snakes of Naja atra reveal medically important dynamic range and systematic geographic variation. J Proteomics, 128: 92–104
Janes D. N., Bush S. P., Kolluru G. R. 2010. Large snake size suggests increased snakebite severity in patients bitten by rattlesnakes in Southern California. Wild Environ Med, 21: 120–126
Li S. Y., Zhong M. S. 1983. Venom milking and venom yield analysis of Chinese cobra from Guangdong. Acad J Guangzhou Med Univ, 1: 29–31
Lin L. H., Hua L., Qu Y. F., Gao J. F., Ji X. 2014. The phylogeographical pattern and conservation of the Chinese cobra (Naja atra) across its range based on mitochondrial control region sequences. PLoS One, 9: e106944
Mackessy S. P., Sixberry N. M., Heyborne W. H., Fritts T. 2006. Venom of the brown treesnake, Boiga irregularis: ontogenetic shifts and taxa-specific toxicity. Toxicon, 47: 537–548
McCleary R. J. R., Heard D. J. 2010. Venom extraction from anesthetized Florida cottonmouths, Agkistrodon piscivorus conanti, using a portable nerve stimulator. Toxicon, 55: 250–255
McCue M. D., Mason R. 2006. Cost of producing venom in three north American pitviper species. Copeia, 2006: 818–825
Mirtschin P. J., Dunstan N., Hough B., Hamilton E., Klein S., Lucas J., Millar D., Madaras F., Nias T. 2006. Venom yields from Australian and some other species of snakes. Ecotoxicology, 15: 531–538
Mirtschin P. J., Shine R., Nias T. J., Dunstan N. L., Hough B. J., Mirtschin M. 2002. Influences on venom yield in Australian tigersnakes (Notechis scutatus) and brownsnakes (Pseudonaja textilis: Elapidae, Serpentes). Toxicon, 40: 1581–1592
Morgenstern D., King G. F. 2013. The venom optimization hypothesis revisited. Toxicon, 63: 120–128
Oh A. M. F., Tan C. H., Ariaranee G. C., Quraishi N., Tan N. H. 2017. Venomics of Bungarus caeruleus (Indian krait): comparable venom profiles, variable immunoreactivities among specimens from Sri Lanka, India and Pakistan. J Proteomics, 164: 1–18
Pintor A. F. V., Krockenberger A. K., Seymour J. E. 2010. Costs of venom production in the common death adder (Acanthophis antarcticus). Toxicon, 56: 1035–1042
Qin G. P. 1998. China poisonous snake research. Guangxi Science and Technology Press, Nanning, China
Queiroz G. P., Pessoa L. A., Portaro F. C. V., Furtado M. F. D., Tambourgi D. V. 2008. Interspecific variation in venom composition and toxicity of Brazilian snakes from Bothrops genus. Toxicon, 52: 842–851
Reeks T., Lavergne V., Sunagar K., Jones A., Undheim E., Dunstan N., Fry B., Alewood P. F. 2016. Deep venomics of the Pseudonaja genus reveals inter- and intra-specific variation. J Proteomics, 133: 20–32
de Roodt A. R., Boyer L. V., Lanari L. C., Irazu L., Laskowicz R. D., Sabattini P. L., Damin C. F. 2016. Venom yield and its relationship with body size and fang separation of pit vipers from Argentina. Toxicon, 121: 22–29
de Roodt A. R., Dolab J. A., Galarce P. P., Gould E., Litwin S., Dokmetjian J. C., Segre L., Vidal J. C. 1998. A study on the venom yield of venomous snake species from Argentina. Toxicon, 36: 1949–1957
Shan L. L., Gao J. F., Zhang Y. X., Shen S. S., He Y., Wang J., Ma X. M., Ji X. 2016. Proteomic characterization and comparison of venoms from two elapid snakes (Bungarus multicinctus and Naja atra) from China. J Proteomics, 138: 83–94
Sintiprungrat, K., Watcharatanyatip, K., Senevirathne, W. D. S. T., Chaisuriya, P., Chokchaichamnankit, D., Srisomsap, C., Ratanabanangkoon, K. 2016. A comparative study of venomics of Naja naja from India and Sri Lanka, clinical manifestations and antivenomics of an Indian polyspecific antivenom. J Proteomics, 132: 131–143
Tan, K. Y., Tan, C. H., Fung, S. Y., Tan, N. H. 2015. Venomics, lethality and neutralization of Naja kaouthia (monocled cobra) venoms from three different geographical regions of Southeast Asia. J Proteomics, 120: 105–125
Tan, C. H., Tan, K. Y., Yap, M. K., Tan, N. H. 2017. Venomics of Tropidolaemus wagleri, the sexually dimorphic temple pit viper: unveiling a deeply conserved atypical toxin arsenal. Sci Rep, 7: 43237
Tan, K. Y., Tan, N. H., Tan, C. H. 2018. Venom proteomics and antivenom neutralization for the Chinese eastern Russell’s viper, Daboia siamensis from Guangxi and Taiwan. Sci Rep, 8: 8545
Wong, K. Y., Tan, C. H., Tan, K. Y., Quraishi, N. H., Tan, N. H. 2018. Elucidating the biogeographical variation of the venom of Naja naja (spectacled cobra) from Pakistan through a venom-decomplexing proteomic study. J Proteomics, 175: 156–173
Wong, K. Y., Tan, C. H., Tan, N. H. 2016. Venom and purified toxins of the spectacled cobra (Naja naja) from Pakistan: insights into toxicity and antivenom neutralization. Am J Trop Med Hyg, 94: 1392–1399
Xiong Y. L., Wang W. Y., Yang C. J., Xiao F. S., Li W. H. 1992. The analysis of snake venom output and the concerned factor. Zool Res, 13: 73–76
Zhao E. M. 2006. Snakes of China. Anhui Science and Technology Publishing House, Hefei, China

更新日期/Last Update: 2019-03-25