[1].Effects of Increased Salinity on Growth, Development and Survival in Early Life Stages of the Green Toad Bufotes Variabilis (Anura: Bufonidae)[J].Asian Herpetological Research,2018,9(2):129-134.[doi:10.16373/j.cnki.ahr.170083]
 Soheyla YAGHOBI,Somaye VAISSI,Zeynab Taheri KHAS and Mozafar SHARIFI*.Effects of Increased Salinity on Growth, Development and Survival in Early Life Stages of the Green Toad Bufotes Variabilis (Anura: Bufonidae)[J].Asian Herpetological Research(AHR),2018,9(2):129-134.[doi:10.16373/j.cnki.ahr.170083]

Effects of Increased Salinity on Growth, Development and Survival in Early Life Stages of the Green Toad Bufotes Variabilis (Anura: Bufonidae)()

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]



Effects of Increased Salinity on Growth, Development and Survival in Early Life Stages of the Green Toad Bufotes Variabilis (Anura: Bufonidae)
Soheyla YAGHOBI Somaye VAISSI Zeynab Taheri KHAS and Mozafar SHARIFI*
Razi University Centre for Environmental Studies, Department of Biology, Baghabrisham 67149, Kermanshah, Iran
acute toxicity Bufotes variabilis hatching rate road salt salinization survival
This study examined the effects of increased salinity on growth, development and survival of the Green toad, Bufotes variabilis during embryonic, hatching and early larval periods. Eggs from a single cohort of B. variabilis were subjected to acute and chronic toxicity tests for water salinity ranging from 0.20 to 10 g of salt per liter. Results obtained from this study showed that salinity over 3.70 g/l increased embryonic mortality and reduced percentage of hatching and survival rate of larvae. As larvae tolerated salinity 0.20 to 3.70 g/l with highest survival, but salinity of 10 g/l caused mortality of all individuals within 12 h, 7.70–8.70 (g/l) within 4.5 days, 5.70–6.70 g/l within 10 days and 4.70 (g/l) were tolerated within 14 days. Salinity less than 0.70 g/l did not affect survival and hatching success of the embryos. After a 3-week experiment, size of larvae exposed to salinities over 0.70 g/l was lower compared to larvae reared at lower salinity levels. Meanwhile increases in salinity more than 3.70 g/l caused extension in the hatching period. Larvae reared at salinity of 3.70 to 4.70 g/l had morphological abnormalities, such as distortion of tail.


Ackrill P., Hornby R., Thomas S. 1969. Responses of Rana temporaria and Rana esculenta to prolonged exposure to a saline environment. Comp Biochem Physiol, 28(3): 1317–1329
Aghazadeh N., Nojavan M., Mogaddam A. A. 2012. Effects of road-de-icing salt (NaCl) and saline water on water quality in the Urmia area, northwest of Iran. Arab J Geosci, 5(4): 565–570
Alexander L. G., Lailvaux S. P., Pechmann J. H. K., DeVries Philip. J. 2012. Effects of salinity on early life stages of the Gulf Coast toad, Incilius nebulifer (Anura: Bufonidae). Copeia, 2012(1): 106–114
Balinsky J. B. 1981. Adaptation of nitrogen metabolism to hyperosmotic environment in Amphibia. J Exp Zool A Ecol Genet Physiol, 215(3): 335–350
Bernab? I., Bonacci A., Coscarelli F., Tripepi M., Brunelli E. 2013. Effects of salinity stress on Bufo balearicus and Bufo bufo tadpoles: tolerance, morphological gill alterations and Na+/K+-ATPase localization. Aquat Toxicol, 132: 119–133
Berven K. A. 1990. Factors affecting population fluctuations in larval and adult stages of the wood frog (Rana sylvatica). Ecology, 71(4): 1599–1608
Blaustein A. R., Kiesecker J. M. 2002. Complexity in conservation: lessons from the global decline of amphibian populations. Ecol Lett, 5(4): 597–608
Brady S. P. 2013. Microgeographic maladaptive performance and deme depression in response to roads and runoff. Peer J, 1: e163
Brand A. B., Snodgrass J. W., Gallagher M. T., Casey R. E., Van Meter R. 2010. Lethal and sublethal effects of embryonic and larval exposure of Hyla versicolor to stormwater pond sediments. Arch Environ Contam Toxicol, 58(2): 325–331
Chand B. K., Trivedi R. K., Dubey S. K., Rout S. K., Beg M. M., Das U. K. 2015. Effect of salinity on survival and growth of giant freshwater prawn Macrobrachium rosenbergii (de Man). Aquacul Rep, 2: 26–33
Chelgren N. D., Rosenberg D. K., Heppell S. S., and Gitelman A.I. 2006. Carryover aquatic effects on survival of metamorphic frogs during pond emigration. Ecol Appl, 16(1): 250–261
Chinathamby K., Reina R. D., Bailey P. C. E., Lees B. K. 2006. Effects of salinity on the survival, growth and development of tadpoles of the brown tree frog, Litoria ewingii. Aust J Zool, 54(2): 97–105
Christy M. T., Dickman C. R. 2002. Effects of salinity on tadpoles of the green and golden bell frog (Litoria aurea). Amphiba-Reptila, 23(1): 1–11
Corsi S. R., Graczyk, D. J., Geis, S. W., Booth N. L, Richards K. D. 2010. A fresh look at road salt: aquatic toxicity and water-quality impacts on local, regional, and national scales. Environ Sci Technol, 44(19): 7376–7382
Daley, M. L., Potter J. D., McDowell W. H. 2009. Salinization of urbanizing New Hampshire streams and groundwater: effects of road salt and hydrologic variability. J N Am Benthol Soc, 28(4): 929–940
Duellman W. E., Trueb L. 1986. Biology of amphibians. New York: McGraw-Hill, 670
Ferreira H. G., Jesus C. H. 1973. Salt adaptation in Bufo bufo. J physiol, 228(3): 583–600
Findlay S. E. G., Kelly V. R. 2011. Emerging indirect and long‐term road salt effects on ecosystems. Ann N Y Acad Scien, 1223(1): 58–68
Gislén T., Kauri H. 1959. Zoogeography of the Swedish amphibians
and reptiles: With notes on their growth and ecology. Stockholm, Almqvist and Wiksell. Acta vertebratica, Vol. 1, No. 3
Gomez-Mestre I., Tejedo M. 2003. Local adaptation of an anuran amphibian to osmotically stressful environments. Evolution 57(8): 1889–1899
Gomez-Mestre I., Tejedo M., Ramayo E., Estepa J. 2004. Developmental alterations and osmoregulatory physiology of a larval anuran under osmotic stress. Physiol Biochem Zool, 77(2): 267–274
Gordon M. S. 1962. Osmotic regulation in the green toad (Bufo viridis). J Exp Biol, 39(2): 261–270
Gordon M. S., Schmidt-Nielsen K., Kelly H. M. 1961. Osmotic regulation in the crab-eating frog (Rana cancrivora). J Exp Biol, 38(3): 659–678
Gosner K. L. 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica, 16(3): 183–190
Haramura T. 2007. Salinity tolerance of eggs of Buergeria japonica (Amphibia, Anura) inhabiting coastal areas. Zool sci, 24(8): 820–823
Haramura T. 2011. Use of oviposition sites by a rhacophorid frog inhabiting a coastal area in Japan. J Herpetol 45(4): 432–437
Hopkins G. R., Brodie Jr. E. D., French S. S. 2014. Developmental and evolutionary history affect survival in stressful environments. PloS One, 9(4): e95174
Jin L., Whitehead P., Siegel D. I., Findlay S. 2011. Salting our landscape: An integrated catchment model using readily accessible data to assess emerging road salt contamination to streams. Environ Pollut, 159(5): 1257–1265
Karraker N. E. 2007. Are embryonic and larval green frogs (Rana clamitans) insensitive to road de-icing salt?. Herpetol Conserv Biol, 2: 35–41
Karraker N. E., Arrigoni J., Dudgeon D. 2010. Effects of increased salinity and an introduced predator on lowland amphibians in Southern China: Species identity matters. Biol Conserva, 143(5): 1079–1086
Karraker N. E., Gibbs J. P., Vonesh J. R. 2008. Impacts of road deicing salt on the demography of vernal pool-breeding amphibians. Ecol Appl, 18(3): 724–734
Karraker N. E., Ruthig G. R. 2009. Effect of road deicing salt on the susceptibility of amphibian embryos to infection by water molds. Environ Res, 109(1): 40–45
Katz U. 1989. Strategies of adaptation to osmotic stress in anuran amphibia under salt and burrowing conditions. Comp Biochem Physiol Part A: Physiology, 93(3): 499–503
Kumlu M., Eroldogan O. T., Aktas M. 2000. Effects of temperature and salinity on larval growth, survival and development of Penaeus semisulcatus. Aquaculture, 188(1): 167–173
Langhans M., Peterson B., Walker A., Smith G. R., Rettig J. E. 2009. Effects of salinity on survivorship of wood frog (Rana sylvatica) tadpoles. J Fresh Ecol, 24(2): 335–337
Marsalek J. 2003. Road salts in urban stormwater: An emerging issue in stormwater management in cold climates. Water Sci Technol, 48(9): 61–70
Masshaii N., Balouch M., Mobedi I. 2008. Report about helminth parasites of some Amphibians (Anura: Ranidae, Bufonidae) from the North and Northeast of Iran. J Sci Univ Tehran, 33(4): 9–13
Nakkrasae L. I., Phummisutthigoon S., Charoenphandhu N. 2016. Low salinity increases survival, body weight and development in tadpoles of the Chinese edible frog Hoplobatrachus rugulosus. Aquacul Res, 47(10): 3109–3118.
Newman R. A., Dunham A. E. 1994. Size at metamorphosis and water loss in a desert anuran (Scaphiopus couchii). Copeia, 372–381
Nielsen D. L., Brock M. A. 2009. Modified water regime and salinity as a consequence of climate change: Prospects for wetlands of Southern Australia. Clim Change, 95(3): 523–533
Nielsen D. L., Brock M. A., Rees G. N., Baldwin D. S. 2003. Effects of increasing salinity on freshwater ecosystems in Australia. Aust J Bot. 51(6): 655–665
Niyogi S., Blewett T. A., Gallagher T., Fehsenfeld S., Wood C. M. 2016. Effects of salinity on short-term waterbo rne zinc uptake, accumulation and sub-lethal toxicity in the green shore crab (Carcinus maenas). Aquat Toxicol, 178: 132–140
Peterson A. T., Ortega-Huerta M. A., Bartley J., S?nchez-Cordero V., Sober?n J., Buddemeier R. H., Stockwell D. R. B. 2002. Future projections for Mexican faunas under global climate change scenarios. Nature, 416(6881): 626–629
Petranka J. W., Doyle E. J. 2010. Effects of road salts on the composition of seasonal pond communities: Can the use of road salts enhance mosquito recruitment? Aquat Ecol, 44(1): 155–166
Petranka J. W., Francis R. A. 2013. Effects of road salts on seasonal wetlands: poor prey performance may compromise growth of predatory salamanders. Wetlands, 33(4): 707–715
Pora A. E., Stoicovici F. 1955. Cercetari asupra rolului sistemului nervos de la Bufo viridis in fenomenele de adaptare la salinitate. Bull ttiint Acad romdne, 7: 59–89
Ramakrishna D. M., Viraraghavan T. 2005. Environmental impact of chemical de-icers–a review. Water Air and Soil Pollut, 166(1–4): 49–63
Reyahi K., Nafea M. M., Mahjub H., Hashemy M., Parchian M. 2011. Effects of road deicing salt on the quality of ground water resources in hamadan province, west of Iran. J res health sci, 11(1): 39–44
Sanzo D., Hecnar S. J. 2006. Effects of road de-icing salt (NaCl) on larval wood frogs (Rana sylvatica). Environ Pollut, 140(2): 247–256
Shoemaker V., Nagy K. A. 1977. Osmoregulation in amphibians and reptiles. Annu Rev Physiol, 39(1): 449–471
Smith D. C. 1987. Adult recruitment in chorus frogs: Effects of size and date at metamorphosis. Ecology, 68(2): 344–350
Snodgrass J. W., Casey R. E., Joseph D., Simon J. A. 2008. Microcosm investigations of stormwater pond sediment toxicity to embryonic and larval amphibians: Variation in sensitivity among species. Environ Pollut, 154(2): 291–297
Sparling D. W., Bishop C. A., Linder G. 2000. The current status of amphibian and reptile ecotoxicological research. Society of Environmental Toxicology and Chemistry, 13pp
Stuart S. N., Chanson J. S., Cox N. A., Young B. E., Rodrigues A. S. L., Fischman D. L., Waller R. W. 2004. Status and trends of amphibian declines and extinctions worldwide. Science, 306(5702): 1783–1786
Thirion J. M. 2014. salinity of the reproduction habitats of the Western spadefoot Toad Pelobates cultripes (cuvier, 1829), along the atlantic coast of France. Herpetozoa, 27: 13–20
Viertel B. 1999. Salt tolerance of Rana temporaria: Spawning site selection and survival during embryonic development (Amphibia, Anura). Amphiba-Reptila, 20(2): 161–171
Wijethunga U., Greenlees M., Shine R. 2016. Living up to its name? The effect of salinity on development, growth, and phenotype of the “marine” toad (Rhinella marina). J Comp Physiol B, 186(2): 205–213
Wu C. S., Kam Y. C. 2009. Effects of salinity on the survival, growth, development, and metamorphosis of Fejervarya limnocharis tadpoles living in brackish water. Zool Sci, 26(7): 476–482

更新日期/Last Update: 2018-06-26