[1].The Influence of Oxygen on the Development of Nanorana parkeri Tadpoles[J].Asian Herpetological Research,2018,9(1):50-55.[doi:10.16373/j.cnki.ahr.170086]
 Xingzhi HAN,Qiong ZHANG,*,et al.The Influence of Oxygen on the Development of Nanorana parkeri Tadpoles[J].Asian Herpetological Research(AHR),2018,9(1):50-55.[doi:10.16373/j.cnki.ahr.170086]

The Influence of Oxygen on the Development of Nanorana parkeri Tadpoles()

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]



The Influence of Oxygen on the Development of Nanorana parkeri Tadpoles
Xingzhi HAN1 Qiong ZHANG2*# Liqing FAN3 Le YANG4 and Zhensheng LIU1*#
1 College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, China
2 Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
3 Tibet Agriculture and Animal Husbandry College, Linzhi 860000, Tibet, China
4 Tibet Plateau Institute of Biology, Lhasa 850001, Tibet, China
amphibian frog local adaptation metamorphosis oxygen concentration telomere length
Ectothermic animals are tolerant of variable oxygen availability, whether low-oxygen levels constrain the fitness of ectotherms remains unclear. Nanorana parkeri, an anuran endemic to the southern Tibetan plateau, is an excellent model with which to answer this question. In this study, we raised tadpoles of N. parkeri in oxygenated water (high-oxygen group) and deoxygenated unchlorinated tap water (low-oxygen group) and monitored their growth, mortality, and telomere length. The growth rate for body length and body weight was higher in the low-oxygen group than in the high-oxygen group. However, dissolved oxygen did not affect development time, mortality, and telomere length of the tadpoles. These results suggest that although the oxygen concentration influenced some phenotype traits of plateau tadpoles, but it didn’t influence the telomere length and survival rate, potential explanations are the local adaptation and N. parkeri tadpoles’ wide oxygen tolerance, and fluctuant toxic content that resulted in little oxidative stress on tadpoles. These results indicated that low oxygen was not a stress to N. parkeri tadpoles’ fitness and survival. This study is helpful in understanding the adaptation mechanisms of Tibetan plateau amphibians.


Basang. 2005. The progenitive ecosystem of Altirana Seeingeger in Lhasa District. J Tibet Univ, 20:74–90
Bickler P. E., Buck L. T. 2007. Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability. Annu Rev Physiol, 69:145–170
Blumthaler M., Ambach W., Ellinger R. 1997. Increase in solar UV radiation with altitude. J Photochem Photobiol B-Biol, 39:130–134
Bradford D. F. 1983. Winterkill, oxygen relations, and energy metabolism of a submerged dormant amphibian, Rana muscosa. Ecology, 64:1171–1183
Callicott R. J., Womack J. E. 2006. Real-time PCR assay for measurement of mouse telomeres. Comparative Med, 56:17–22
Cawthon, R. M. 2002. Telomere measurement by quantitative PCR. Nucleic Acids Res, 30: E47
Che, J., Zhou W. W., Hu J. S., Yan F., Papenfuss T. J., Wake D. B., Zhang Y. P. 2010. Spiny frogs (Paini) illuminate the history of the Himalayan region and Southeast Asia. Proc. Natl Acad Sci U S A, 107:13765–13770
Criscuolo F., Bize P., Nasir L., Metcalfe N.B., Foote C. G., Griffiths K., Gault E.A., Monaghan P. 2009. Real-time quantitative PCR assay for measurement of avian telomeres. J Avian Biol, 40:342–347
Crowder W. C., Nie M., Ultsch G. R. 1998. Oxygen uptake in bullfrog tadpoles (Rana catesbeiana). J Exp Zool Part A, 280:121–134
Cvetkovi? D., Toma?evi? N., Ficetola G.F., Crnobrnja-Isailovi?, Miaud C. 2009. Bergmann’s rule in amphibians: combining demographic and ecological parameters to explain body size variation among populations in the common toad Bufo bufo. J Zool Syst Evol Res, 47:171–180
Debes P. V., Visse M., Panda B., IImonen P., Vasem?gi A. 2016. Is telomere length a molecular marker of past thermal stress in wild fish ? Mol Ecol, 25: 5412-5424 | doi:10.1111/mec.13856
Ferrario D., Collotta A., Carfi M., Bowe G., Vahter M., Hartung T., Gribaldo L. 2009. Arsenic induces telomerase expression and maintains telomere length in human cord blood cells. Toxicology, 260:132–141
Gou X., Wang Z., Li N., Qiu F., Xu Z., Yan D., Yang S., Jia J., Kong X., Wei Z., Lu S., Lian L., Wang X., Li G., Ma T., Jiang Q., Zhao X., Yang J., Liu B., Wei D., Li H., Yang J., Yan Y., Zhao G., Dong X., Li M., Deng W., Leng J., Wei C., Wang C., Mao H., Zhang H., Ding G., Li Y. 2014. Whole genome sequencing of six dog breeds from continuous altitudes reveals adaption to high-altitude hypoxia. Genome Res, 24:1308-1315 | Doi:10.1101/gr.171876.113
Gosner K. L. 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica, 16:183–190
Heidinger B. J., Blount J. D., Boner W., Griffiths K., Metcalfe N. B., Monaghan P. 2012. Telomere length in early life predicts lifespan. Proc Natl Acad Sci USA, 109:1743-1748 | Doi:10.1073/pnas.1113306109
Hoffmann H. 2010. Cyanosis by methemoglobinemia in tadpoles of Cochranella granulosa (Anura: Centrolenidae). Rev Biol Trop, 58:1467–1478
Hu S. Q. 1987. Amphibia-Reptilia in Tibet. Science Press, China
Liao W. B., Zhou C. Q., Yang Z. S., Hu J. C., Lu X. 2010. Age, size and growth in two populations of the dark-spotted frog Rana nigromaculata at different altitudes in southwestern China. Herpetolog J, 20:77–82
Ma X. Y., Lu X., Meril? J. 2009. Altitudinal decline of body size in a Tibetan frog. J Zool, 279:364–371
Mallatt J., Winchell C. J. 2007. Ribosomal RNA genes and deuterostome phylogeny revisited: More cyclostomes, elasmobranchs, reptiles, and a brittle star. Mol Phylogenet Evol, 43:1005–1022
Olsson M., Pauliny A., Wapstra E., Blomqvist D. 2010. Proximate determinants of telomere length in sand lizards (Lacerta agilis). Biol Lett, 6:651–653
Olsson M., Pauliny A., Wapstra E., Uller T., Schwartz T., Blomqvist D. 2011a. Sex differences in sand lizard telomere inheritance: Paternal epigenetic effects increases telomere heritability and offspring survival. PLoS One 6: e17473
Olsson M., Pauliny A., Wapstra E., Uller T., Schwartz T., Miller E., Blomqvist D. 2011b. Sexual differences in telomere selection in the wild. Mol Ecol, 20: 2085–2099
Pauliny A., Wagner P. H., Augustin J., Szép T., Blomqvist D. 2006. Age-independent telomere length predicts fitness in two bird species. Mol Ecol, 15:1681–1687
Scheinfeldt L. B., Tishkoff S. A. 2010. Living the high life: high-altitude adaptation. Genome Biol, 11:133
Semenza G.L. 2000. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol, 88:1474–1480
Stewart E. R., Reese S. A., Ultsch G. R. 2004. The physiology of hibernation in Canadian leopard frogs (Rana pipiens) and bullfrogs (Rana catesbeiana). Physiol Biochem Zool, 77:65–73
Von Zglinicki T. 2002. Oxidative stress shortens telomeres. Trends Biochem Sci, 27:339–344
Wang D. P., Li H. G., Li Y. J., Guo S. C., Yang J., Qi D. L., Jin C., Zhao X. Q. 2006. Hypoxia-inducible factor 1α cDNA cloning and its mRNA and protein tissue specific expression in domestic yak (Bos grunniens) from Qinghai-Tibetan plateau. Biochem Biophys Res Commun, 348:310–319
Wilbourn R. V., Froy H., McManus M., Cheynel L., Gaillard J., Gilot-Fromont E., Regis C., Rey B., Pellerin M., Lema?tre J., Nussey D. H. 2017. Age-dependent associations between telomere length and environmental conditions in roe deer. Biol Lett, 13: 20170434|http://dx.doi.org/10.1098/rsbl.2017.0434
Wu X. Y., Liang C. N., Ding X. Z., Guo X., Bao P. J., Chu M., Liu W. B., Yang P. 2013. Association of novel single-nucleotide polymorphisms of the vascular endothelial growth factor-A gene with high-altitude adaptation in yak (Bos grunniens). Genet Mol Res, 12:5506–5515
Zhang L. X., Ma X. Y., Jiang J. P., Lu X. 2012. Stronger condition dependence in female size explains altitudinal variation in sexual size dimorphism of a Tibetan frog. Biol J Linnean Soc, 107:558–565

更新日期/Last Update: 2018-03-27