[1].A Sex-linked Microsatellite Marker Reveals Male Heterogamety in Quasipaa boulengeri (Anura: Dicroglossidae)[J].Asian Herpetological Research,2017,8(3):184-189.[doi:10.16373/j.cnki.ahr.160055]
 Siqi YUAN,Yun XIA and Xiaomao ZENG*.A Sex-linked Microsatellite Marker Reveals Male Heterogamety in Quasipaa boulengeri (Anura: Dicroglossidae)[J].Asian Herpetological Reserch(AHR),2017,8(3):184-189.[doi:10.16373/j.cnki.ahr.160055]
点击复制

A Sex-linked Microsatellite Marker Reveals Male Heterogamety in Quasipaa boulengeri (Anura: Dicroglossidae)()
分享到:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

卷:
8
期数:
2017年3期
页码:
184-189
栏目:
出版日期:
2017-09-25

文章信息/Info

Title:
A Sex-linked Microsatellite Marker Reveals Male Heterogamety in Quasipaa boulengeri (Anura: Dicroglossidae)
文章编号:
AHR-2016-0055
Author(s):
Siqi YUAN1 2 Yun XIA1 and Xiaomao ZENG1*
1 Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
Keywords:
microsatellites sex-specific marker male heterogamety Quasipaa boulengeri
DOI:
10.16373/j.cnki.ahr.160055
Abstract:
Few amphibians possess morphologically distinguishable heteromorphic sex chromosomes. The classic indirect method is a time-consuming and resource-demanding task to identify the heterogametic sex. Here we have taken advantage of a sex-specific microsatellite marker, by amplifying a large number of samples of known male and female individuals from various populations, to reveal a homogeneous pattern of male heterogamety in Quasipaa boulengeri. The identification of the heterogametic sex will help interpreting the evolution of sex determination. Besides relevance for evolutionary studies of sex determination, the sex-linked markers have potential for addressing practical issues in conservation biology because the sex reversal that caused by anthropogenic endocrine disruptors is considered as a reason for amphibian decline.

参考文献/References:

Alho J., Matsuba C., Meril? J. 2010. Sex reversal and primary sex ratios in the common frog (Rana temporaria). Mol Ecol, 19(9): 1763–1773
Berset–Br?ndli L., Jaquiéry J., Dubey S., Perrin N. 2006. A sex–specific marker reveals male heterogamety in European tree frogs. Mol Biol Evol, 23(6): 1104–1106
Berset–Br?ndli L., Jaquiéry J., Perrin N. 2007. Recombination is suppressed and variability reduced in a nascent Y chromosome. J Evol Biol, 20 (3): 1182–1188
Chen W. Y., Wang Z. S., Wang X. Z., Yang Y. H., Sun Q. L. 1983. A comparative study of the karyotypes from six species of frogs in Sichuan. Zoo Res, 4(1): 83–88 (In Chinese)
Dufresnes C., St?ck M., Brelsford A., Perrin N. 2014. Range-wide sex-chromosome sequence similarity supports occasional XY recombination in European tree frogs (Hyla arborea). PLoS one, 9(6): e97959.
Eggert C. 2004. Sex determination: the amphibian model. Reprod Nutr Dev, 44(6): 539–549
Hayes T. B. 2005. Welcome to the revolution: integrative biology and assessing the impact of endocrine disruptors on environmental and public health. Integr Comp Biol, 45(2): 321–329
Hillis D. M., Green D. M. 1990. Evolutionary changes of heterogametic sex in the phylogenetic history of amphibians. J Evol Biol, 3(1–2): 49–64
Hu J. S. 2004. Molecular phylogenetic studies on Spinosae group (Genus Paa) in China (Amphibian, Anura, Ranidae). Ph.D. Thesis. Kunming: Yunnan University. 97pp (In Chinese)
Lau M.W.N., Yuan Z.G., Zhao E.M., Chan B. 2004. Quasipaa boulengeri. in: IUCN 2004. IUCN Red List of Threatened Species. Version 2004.1. www.iucnredlist.org
Li S. S., Hu J. S. 1996. The study on the karyotypes, C–banding and Ag–NORs of four Paa species in China. Zoo Res, 17(1): 84–88 (In Chinese)
Li S. S., Hu J. S. 1999. The karyotype evolution and infra-species variation of geographical population of Anura genus of Paa from China. China Zoological Society-Zoological Studies in China. Beijing: Chinese Forestry Publishing House. pp.976–982 (In Chinese)
Qing L. Y., Xia Y., Zheng Y. C., Zeng X. M. 2012. A de dovo case of floating chromosomal polymorphisms by translocation in Quasipaa boulengeri (Anura, Dicroglossidae). PLoS One, 7(10): e46163
Reeder A. L., Ruiz M. O., Pessier A., Brown L. E., Levengood J. M., Phillips C. A., Wheeler M. B., Warner R. E., Beasley V. R. 2005. Intersexuality and the cricket frog decline: historic and geographic trends. Environ Health Perspect, 113(3): 261–265
Rodrigues N., Merila J., Patrelle C., Perrin N. 2014. Geographic variation in sex–chromosome differentiation in the common frog (Rana temporaria). Mol Ecol, 23(14): 3409–3418
Rodrigues N., Vuille Y., Brelsford A., Meril? J., Perrin N. 2016. The genetic contribution to sex determination and number of sex chromosomes vary among populations of common frogs (Rana temporaria). Heredity, 117(1): 1–8
Raymond M., Rousset F. 1995. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J Hered, 86(3): 248–249
Roco ?. S., Olmstead A. W., Degitz S. J., Amano T., Zimmerman L. B., Bullejos M. 2015. Coexistence of Y, W, and Z sex chromosomes in Xenopus tropicalis. Proc Natl Acad Sci USA, 112(34): E4752–4761
Rousset F. 2008. Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour, 8(1): 103–106
Sambrook J., Russell D. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, New York: Cold Spring Harbor Press. 2368 pp
Schmid M., Steinlein C. 2001. Sex chromosomes, sex-linked genes, and sex determination in the vertebrate class amphibia. EXS, 91(91): 143–176
Schmid M., Vitelli L., Bastoni R. 1987. Chromosome banding in amphibia XI. Constitutive heterochromatin, nucleolus organizers, 18S+28S and 5S ribosomal RNA genes in Ascaphidae, Pipidae, Discoglossidae, and Pelobatidae. Chromosoma, 95(4): 271–284
St?ck M., Steinlein C., Lamatsch D. K., Schartl M., Schmid M. 2005. Multiple origins of tetraploid taxa in the Eurasian Bufo viridis subgroup. Genetica, 124(2): 255–272
St?ck M., Croll D., Dumas Z., Biollay S., Wang J., Perrin N. 2011a. A cryptic heterogametic transition revealed by sex–linked DNA markers in Palearctic green toads. J Evol Biol, 24(5): 1064–1070
van Oosterhout C., Hutchinson W. F., Wills D. P. M., Shipley P. 2004. Micro-checker: Software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Resour, 4(3): 535–538
Wang S., Xie Y. 2009. China species red list (vol 11). Vertebrates. Part 1. Beijing: Higher Education Press (In Chinese)
Wang Z. S., Wang X. Z., Chen W. Y. 1983. A comparative study on constitutive heterochromatin and mucleolus–organization regions (NORs) of three species of the genus Rana. Acta Herpetol Sinica, 1983, 2(4): 1–6 (In Chinese)
Xia Y., Hu L., Shan X., Zheng Y. C., Zeng X. M. 2013. Isolation and characterization of eleven polymorphic tetranucleotide microsatellite loci for Quasipaa boulengeri (Anura: Dicroglossidae). Conserv Genet Resour, 5(1): 5–7
Xie F., Lau M. W. N., Stuart S. N., Chanson J. S., Cox N. A., Fischman D. L. 2007. Conservation needs of amphibians in China: a review. Science in China Series C: Life Sciences, 50(2): 265–276
Yuan S. Q., Xia Y., Zheng Y. C., Zeng X. M. 2015. Development of microsatellite markers for the spiny–bellied frog Quasipaa boulengeri (Anura: Dicroglossidae) through transcriptome sequencing. Conserv Genet Resour, 7(1): 229–231
Zhang J. Y., Gu X. M. 1997. A study on karyotype and Ag–NORs of Paa boulengeri from Shuicheng of Guizhou (in Chinese). J Guizhou Normal University (Natural Science), 15(2): 48–51

更新日期/Last Update: 2017-09-25