[1].The Effect of Speed on the Hindlimb Kinematics of the Reeves’ Butterfly Lizard, Leiolepis reevesii (Agamidae)[J].Asian Herpetological Research,2016,7(3):191-199.[doi:10.16373/j.cnki.ahr.150066]
 Hongliang LU,Yu DU,et al.The Effect of Speed on the Hindlimb Kinematics of the Reeves’ Butterfly Lizard, Leiolepis reevesii (Agamidae)[J].Asian Herpetological Reserch(AHR),2016,7(3):191-199.[doi:10.16373/j.cnki.ahr.150066]

The Effect of Speed on the Hindlimb Kinematics of the Reeves’ Butterfly Lizard, Leiolepis reevesii (Agamidae)()

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]



The Effect of Speed on the Hindlimb Kinematics of the Reeves’ Butterfly Lizard, Leiolepis reevesii (Agamidae)
Hongliang LU1 2 Yu DU3 Chixian LIN3 and Xiang JI2*
1 Hangzhou Key Laboratory for Animal Adaptation and Evolution, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
2 Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
3 Hainan Key Laboratory for Herpetology, College of Tropical Biology and Agronomy, Hainan Tropical Ocean University, Sanya 572022, China
Agamidae Leiolepis reevesii kinematics speed effect bipedalism
We recorded locomotor performance of Reeves’ butterfly lizards (Leiolepis reevesii) on a racetrack and to describe hindlimb kinematic patterns and to evaluate the effect of speed on hindlimb kinematics. The studied lizards predominantly used quadrupedal locomotion at relatively low speeds, but ran bipedally with a digitigrade posture at high speeds. Speed was positively correlated with both stride length and stride frequency, and was negatively correlated with duty factor. Lizards modulated speed probably by a combination of changing frequency and amplitude of limb movements. Within the range of standardized speeds from 50 to 150 cm/s, speed effects on 28 out of a total of 56 kinematic variables were significant. The hip height at footfall increased as speed increased, whereas the amplitude of vertical oscillations of the hip did not vary with speed. The total longitudinal and dorsoventral movements relative to the hip varied with speed for all parts of the limb that were distal to the knee, whereas the lateral movements did not. The knee and ankle angle at footfall varied with speed, but did not at the end of stance. The degree of pelvis rotation during the entire stride cycle did not vary with speed. Our results suggest that pelvic rotation and femoral protraction/retraction have a minor role in modulating speed in L. reevesii.


Aerts P., Van Damme R., D’Ao?t K., Van Hooydonck B. 2003. Bipedalism in lizards: whole-body modelling reveals a possible spandrel. Phil Trans R Soc B, 358: 1525–1533
Angilletta M. J., Niewiarowski P. H., Navas C. A. 2002. The evolution of thermal physiology in ectotherms. J Therm Biol, 27: 249–268
Arnold S. J. 1983. Morphology, performance and fitness. Am Zool, 23: 347–361
Ashley-Ross M. A. 1994a. Hind limb kinematics during terrestrial locomotion in a salamander (Dicamptodon tenebrosus). J Exp Biol, 193: 255–283
Ashley-Ross M. A. 1994b. Metamorphic and speed effects on hindlimb kinematics during terrestrial locomotion in the salamander Dicamptodon tenebrosus. J Exp Biol, 193: 285–305
Bennett A. F. 1989. Integrated studies of locomotor performance. In: Wake D. B., Roth G. (Eds.), Complex Organismal Functions: Integration and Evolution in Vertebrates. Wiley: Chichester, 191–204
Brinkman D. 1981. The hind limb step cycle of Iguana and primitive reptiles. J Zool, 181: 91–103
Clemente C. J., Thompson G. G., Withers P. C., Lloyd D. 2004. Kinematics, maximal metabolic rate, sprint and endurance for a slow-moving lizard, the thorny devil (Moloch horridus). Austr J Zool, 52: 487–503
Clemente C. J., Withers P. C., Thompson G., Lloyd D. 2008. Why go bipedal? Locomotion and morphology in Australian agamid lizards. J Exp Biol, 211: 2058–2065
Du Y., Lin C. X., Lin L. H., Qiu Q. B., Ji X. 2011. Ontogenetic shifts in sexual dimorphism and female reproduction in the Reeves’s butterfly lizard Leiolepis reevesii from Hainan, China. J Herpetol, 45: 399–405
Farley C. T., Ko T. C. 1997. Mechanics of locomotion in lizards. J Exp Biol, 200: 2177–2188
Fieler C. L., Jayne B. C. 1998. Effects of speed on the hindlimb kinematics of the lizard Dipsosaurus dorsalis. J Exp Biol, 201: 609–622
Foster K. L., Higham T. E. 2012. How forelimb and hindlimb function changes with incline and perch diameter in the green anole, Anolis carolinensis. J Exp Biol, 215: 2288–2300
Fuller P. O., Higham T. E., Clark A. J. 2011. Posture, speed, and habitat structure: three-dimensional hindlimb kinematics of two species of padless geckos. Zoology, 114: 104–112
Higham T. E., Jayne B. C. 2004. Locomotion of lizards on inclines and perches: hindlimb kinematics of an arboreal specialist and a terrestrial generalist. J Exp Biol, 207: 233–248
Hsieh S. T. 2003. Three-dimensional hindlimb kinematics of water running in the plumed basilisk lizard (Basiliscus plumifrons). J Exp Biol, 206: 4363–4377
Irschick D. J., Garland T. 2001. Integrating function and ecology in studies of adaptation: Investigations of locomotor capacity as a model system. Annu Rev Ecol Syst, 32: 367–396
Irschick D. J., Jayne B. C. 1998. Effects of incline on speed, acceleration, body posture, and hindlimb kinematics in two species of lizard, Callisaurus draconoides and Uma scoparia. J Exp Biol, 201: 273–287
Irschick D. J., Jayne B. C. 1999a. Comparative three-dimensional kinematics of the hindlimb for high-speed bipedal and quadrupedal locomotion of lizards. J Exp Biol, 202: 1047–1065
Irschick D. J., Jayne B. C. 1999b. A field study of effects of incline on the escape locomotion of a bipedal lizard, Callisaurus draconoides. Physiol Biochem Zool, 72: 44–56
Irschick D. J., Meyers J. J., Husak J. F., Le Galliard J. F. 2008. How does selection operate on whole-organism functional performance capacities? A review and synthesis. Evol Ecol Res, 10: 177–196
Jayne B. C., Bennett A. F., Lauder G. V. 1990. Muscle recruitment during terrestrial locomotion: how speed and temperature affect fibre type use in a lizard. J Exp Biol, 152: 101–128
Jayne B. C. Irschick D. C. 1999. Effects of incline and speed on the three-dimensional hindlimb kinematics of a generalized iguanian lizard (Dipsosaurus dorsalis). J Exp Biol, 202: 143–159
Lin C. X., Du Y., Qiu Q. B., Ji X. 2007. Relatively high but narrow incubation temperatures in lizards depositing eggs in warm and thermally stable nests. Acta Zool Sin, 53: 437–445
Lin C. X., Qiu Q. B., Lin L. H., Ji X. 2004, Sexual dimorphism and reproductive output in Reevese’s butterfly lizards, Leiolepis reevesii. Zool Res, 25: 477–483
Lin L. H., Ji X., Diong C. H., Du Y., Lin C. X. 2010. Phylogeography and population structure of the Reevese’s butterfly lizard (Leiolepis reevesii) inferred from mitochondrial DNA sequences. Mol Phylogenet Evol, 56: 601–607
McElroy E. J., Archambeau K. L., McBrayer L. D. 2012. The correlation between locomotor performance and hindlimb kinematics during burst locomotion in the Florida scrub lizard, Sceloporus woodi. J Exp Biol, 215: 442–453
Pough F. H. 1989. Organismal performance and darwinian fitness: approaches and interpretations. Physiol Zool, 62: 199–236
Reilly S. M., Delancey M. L. 1997a. Sprawling locomotion in the lizard Sceloporus clarkii: the effects of speed on gait, hindlimb kinematics, and axial bending during walking. J Zool, 243: 417–433
Reilly S. M., Delancey M. J. 1997b. Sprawling locomotion in the lizard Sceloporus clarkii: quantitative kinematics of a walking trot. J Exp Biol, 200: 753–765
Reilly S. M., Elias J. A. 1998. Locomotion in Alligator mississippiensis: kinematic effects of speed and posture and their relevance to the sprawling-to-erect paradigm. J Exp Biol, 201: 2559–2574
Reilly S. M., Willey J. S., Biknevicius A. R., Blob R. W. 2005. Locomotor dynamics in a semi-erect posture: integrating movements, motor patterns, ground reaction forces and bone strains of hindlimb locomotion in the alligator. J Exp Biol, 208: 993–1009
Rocha-Barbosa O., Loguercio M. F. C., Velloso A. L. R., Bonates A. C. C. 2008. Bipedal locomotion in Tropidurus torquatus (Wied, 1820) and Liolaemus lutzae Mertens, 1938. Braz J Biol, 68: 649–655
Russell A. P., Bels V. 2001. Biomechanics and kinematics of limb-based locomotion in lizards: review, synthesis and prospectus. Comp Biochem Physiol A, 131: 89–112
Snyder R. C. 1954. The anatomy and function of the pelvic girdle and hindlimb in lizard locomotion. Am J Anat, 95: 1–46
Snyder R. C. 1962. Adaptations for bipedal locomotion in lizards. Am Zool, 2: 191–203
Spezzano Jr. L. C., Jayne B. C. 2004. The effects of surface diameter and incline on the hindlimb kinematics of an arboreal lizard (Anolis sagrei). J Exp Biol, 207: 2115–2131
Sukhanov V. B. 1974. General system of symmetrical locomotion of terrestrial vertebrates and some features of movement of lower tetrapods. Amerind New Delhi India.
Van Damme R., Wilson R. S., Vanhooydonck B., Aerts P. 2002. Performance constraints in decathletes. Nature, 415: 755–756
Wang L. J., Yu F. J., Hong M. L., Wu S., Chen X. 2005. Diurnal behavioral time budget and activity rhythm of Reevese’s butterfly lizard under artificial breeding condition. Sichuan J Zool, 24: 9–13
Wang Z. Y., Ji A. H., Endlein T., Li W., Samuel D., Dai Z. D. 2014. Locomotor kinematics of the gecko (Tokay gecko) upon challenge with various inclines. Chin Sci Bull, 59: 4568–4577
Willey J. S., Biknevicius A. R., Reilly S. M., Earls K. D. 2004. The tale of the tail: limb function and locomotor mechanics in Alligator mississippiensis. J Exp Biol, 207: 553–563
Zaaf A., Van Damme R., Herrel A., Aerts P. 2001. Spatio-temporal gait characteristics of level and vertical locomotion in a ground-dwelling and a climbing gecko. J Exp Biol, 204: 1233–1246

更新日期/Last Update: 2016-09-25