[1].Changes in Electroencephalogram Approximate Entropy Reflect Auditory Processing and Functional Complexity in Frogs[J].Asian Herpetological Research,2016,7(3):180-190.[doi:10.16373/j.cnki.ahr.160006]
 Yansu LIU,Yanzhu FAN,Fei XUE,et al.Changes in Electroencephalogram Approximate Entropy Reflect Auditory Processing and Functional Complexity in Frogs[J].Asian Herpetological Reserch(AHR),2016,7(3):180-190.[doi:10.16373/j.cnki.ahr.160006]
点击复制

Changes in Electroencephalogram Approximate Entropy Reflect Auditory Processing and Functional Complexity in Frogs()
分享到:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

卷:
7
期数:
2016年3期
页码:
180-190
栏目:
出版日期:
2016-09-25

文章信息/Info

Title:
Changes in Electroencephalogram Approximate Entropy Reflect Auditory Processing and Functional Complexity in Frogs
文章编号:
AHR-2016-0006
Author(s):
Yansu LIU1 Yanzhu FAN2 Fei XUE3 Xizi YUE3 Steven E. BRAUTH4 Yezhong TANG3 and Guangzhan FANG3*
1 Sichuan Nursing Vocational College. No.173, Longdu Nan Road, Longquan district, Chengdu, Sichuan, China
2 College of Life Science, Northwest Normal University. No. 967 Anning East Road, Lanzhou, Gansu, China
3 Chengdu Institute of Biology, Chinese Academy of Sciences. No. 9 Section 4, Renmin Nan Road, Chengdu, Sichuan, China
4 Department of Psychology, University of Maryland, College Park MD 20742, USA
Keywords:
electroencephalogram (EEG) approximate entropy (ApEn) complexityadvertisement call frog
DOI:
10.16373/j.cnki.ahr.160006
Abstract:
Brain systems engage in what are generally considered to be among the most complex forms of information processing. In the present study, we investigated the functional complexity of anuran auditory processing using the approximate entropy (ApEn) protocol for electroencephalogram (EEG) recordings from the forebrain and midbrain while male and female music frogs (Babina daunchina) listened to acoustic stimuli whose biological significance varied. The stimuli used were synthesized white noise (reflecting a novel signal), conspecific male advertisement calls with either high or low sexual attractiveness (reflecting sexual selection) and silence (reflecting a baseline). The results showed that 1) ApEn evoked by conspecific calls exceeded ApEn evoked by synthesized white noise in the left mesencephalon indicating this structure plays a critical role in processing acoustic signals with biological significance; 2) ApEn in the mesencephalon was significantly higher than for the telencephalon, consistent with the fact that the anuran midbrain contains a large well-organized auditory nucleus (torus semicircularis) while the forebrain does not; 3) for females ApEn in the mesencephalon was significantly different than that of males, suggesting that males and females process biological stimuli related to mate choice differently.

参考文献/References:

Alexander R. D., Marshall D. C., Cooley J. R. 1997. Evolutionary perspectives on insect mating. In J. C. Choe and B. J. Crespi (Eds.), The evolution of mating systems in insects and arachnids. Cambridge (UK): Cambridge University Press, p 4–31
Andersson M. B. 1994. Sexual selection. Princeton, NJ: Princeton University Press
Anokhin A. P., Lutzenberger W., Birbaumer N. 1999. Spatiotemporal organization of brain dynamics and intelligence: an EEG study in adolescents. Int J Psychophysiol, 33: 259–273.
Anokhin A. P., Müller V., Lindenberger U., Heath A. C., Myers E. 2006. Genetic influences on dynamic complexity of brain oscillations. Neurosci Lett, 397: 93–98
Babloyantz A. 1986. Evidence of chaotic dynamics of brain activity during the sleep cycle, Dimensions and entropies in chaotic systems: Springer, p 241–245
Bassett D. S., Gazzaniga M. S. 2011. Understanding complexity in the human brain. Trends Cogn Sci, 15: 200–209
Bateson M., Healy S. D. 2005. Comparative evaluation and its implications for mate choice. Trends Ecol Evol, 20: 659–664.
Bizas E., Simos P., Stam C., Arvanitis S., Terzakis D., Micheloyannis S. 1999. EEG correlates of cerebral engagement in reading tasks. Brain Topogr, 12: 99–105
Bressler S. L., Kelso J. S. 2001. Cortical coordination dynamics and cognition. Trends Cogn Sci, 5: 26–36
Byrne P. G. 2008. Strategic male calling behavior in an Australian terrestrial toadlet (Pseudophryne bibronii). Copeia, 2008: 57–63
Chen Q., Cui J. G., Fang G. Z., Brauth S. E., Tang Y. Z. 2011. Acoustic Analysis of the Advertisement Calls of the Music Frog, Babina daunchina. J Herpetol, 45: 406–416
Cohen J. 1992. A power primer. Psychol Bull, 112: 155–159
Cotton S., Small J., Pomiankowski A. 2006. Sexual selection and condition-dependent mate preferences. Curr Biol, 16: R755–765
Cui J. G., Tang Y. Z., Narins P. M. 2012. Real estate ads in Emei music frog vocalizations: female preference for calls emanating from burrows. Biol Lett, 8: 337–340
Endepols H., Feng A. S., Gerhardt H. C., Schul J., Walkowiak W. 2003. Roles of the auditory midbrain and thalamus in selective phonotaxis in female gray treefrogs (Hyla versicolor). Behav Brain Res, 145: 63–77
Fang G. Z., Chen Q., Cui J. G., Tang Y. Z. 2012a. Electroencephalogram bands modulated by vigilance states in an anuran species: A factor analytic approach. J Comp Physiol A, 198: 119–127
Fang G. Z., Cui J. G., Chen Q., Yang P., Song J., Tang Y. Z. 2011. Changes in electroencephalographic power spectra associated with reproductive status in frog. Adv Neu Net–ISNN, 2011: 139–147
Fang G. Z., Jiang F., Yang P., Cui J. G., Brauth S. E., Tang Y. Z. 2014a. Male vocal competition is dynamic and strongly affected by social contexts in music frogs. Anim Cogn, 17: 483–494.
Fang G. Z., Xue F., Yang P., Cui J. G., Brauth S. E., Tang Y. Z. 2014b. Right ear advantage for vocal communication in frogs results from both structural asymmetry and attention modulation. Behav Brain Res, 266: 77–84
Fang G. Z., Yang P., Cui J. G., Yao D. Z., Brauth S. E., Tang Y. Z. 2012b. Mating signals indicating sexual receptiveness induce unique spatio-temporal EEG theta patterns in an anuran species. PLoS One, 7: e52364
Fang G. Z., Yang P., Xue F., Cui J. G., Brauth S. E., Tang Y. Z. 2015. Sound classification and call discrimination are decoded in order as revealed by event-related potential components in frogs. Brain Behav Evol, 86: 232–245
Gerhardt H. C., Bee M. A. 2007. Recognition and localization of acoustic signals. In P. M. Narins, A. S. Feng, R. R. Fay and A. N. Popper (Eds.), Hearing and sound communication in amphibians. New York: Springer, p 113–146
Gibson R. M., Langen T. A. 1996. How do animals choose their mates? Trends Ecol Evol, 11: 468–470
Gooler D. M., Condon C. J., Xu J., Feng A. S. 1993. Sound direction influences the frequency-tuning characteristics of neurons in the frog inferior colliculus. J Neurophysiol, 69: 1018–1030
Gooler D. M., Xu J., Feng A. S. 1996. Binaural inhibition is important in shaping the free-field frequency selectivity of single neurons in the inferior colliculus. J Neurophysiol, 76: 2580–2594
Grafe T. U. 1997. Costs and benefits of mate choice in the lek-breeding reed frog, Hyperolius marmoratus. Anim Behav, 53: 1103–1117
Haff T., Magrath R. 2010. Vulnerable but not helpless: nestlings are fine-tuned to cues of approaching danger. Anim Behav, 79: 487–496
Hogan M. J., Kilmartin L., Keane M., Collins P., Staff R. T., Kaiser J., Lai R., Upton N. 2012. Electrophysiological entropy in younger adults, older controls and older cognitively declined adults. Brain Res, 1445: 1–10.
Inouye T., Shinosaki K., Iyama A., Matsumoto Y. 1993. Localization of activated areas and directional EEG patterns during mental arithmetic. Electroencephalogr Clin Neurophysiol, 86: 224–230
Inouye T., Shinosaki K., Sakamoto H., Toi S., Ukai S., Iyama A., Katsuda Y., Hirano M. 1991. Quantification of EEG irregularity by use of the entropy of the power spectrum. Electroencephalogr Clin Neurophysiol, 79: 204–210
Janetos A. C. 1980. Strategies of female mate choice: a theoretical analysis. Behav Ecol Sociobiol, 7: 107–112
Jau?ovec N., Jau?ovec K. 2010. Resting brain activity: differences between genders. Neuropsychologia, 48: 3918–3925
Jeong J. 2004. EEG dynamics in patients with Alzheimer’s disease. Clin Neurophysiol, 115: 1490–1505.
Jiang F., Fang G. Z., Xue F., Cui J. G., Brauth S. E., Tang Y. Z. 2015. Male music frogs compete vocally on the basis of temporal sequence rather than spatial cues of rival calls. Asian Herpetol Res, 6: 305–316
Kirkpatrick M., Rand A. S., Ryan M. J. 2006. Mate choice rules in animals. Anim Behav, 71: 1215–1225
Koch C., Laurent G. 1999. Complexity and the nervous system. Science, 284: 96–98
Leonard A. S., Hedrick A. V. 2009. Male and female crickets use different decision rules in response to mating signals. Behav Ecol, 20: 1175–1184
Liao W., Lou S., Zeng Y., Meril? J. 2015. Evolution of anuran brains: disentangling ecological and phylogenetic sources of variation. J Evol Biol, 28: 1986–1996
Lin W. Y., Feng A. S. 2001. Free-field unmasking response characteristics of frog auditory nerve fibers: comparison with the responses of midbrain auditory neurons. J Comp Physiol A, 187: 699–712
Lin W. Y., Feng A. S. 2003. GABA is involved in spatial unmasking in the frog auditory midbrain. J Neurosci, 23: 8143–8151
Lippé S., Kovacevic N., McIntosh A. R. 2009. Differential maturation of brain signal complexity in the human auditory and visual system. Front Hum Neurosci, 3: 48
Luksch H., Walkowiak W. 1998. Morphology and axonal projection patterns of auditory neurons in the midbrain of the painted frog, Discoglossus pictus. Hear Res, 122: 1–17
McIntosh A. R. 1999. Mapping cognition to the brain through neural interactions. Memory, 7: 523-548
Melssen W. J., Epping W. J. 1990. A combined sensitivity for frequency and interaural intensity difference in neurons in the auditory midbrain of the grassfrog. Hear Res, 44: 35–49.
Micheloyannis S., Papanikolaou E., Bizas E., Stam C. J., Simos P. G. 2002. Ongoing electroencephalographic signal study of simple arithmetic using linear and non-linear measures. Int J Psychophysiol, 44: 231–238
Moore A. J., Moore P. J. 1988. Female strategy during mate choice: threshold assessment. Evolution, 42: 387-391
Narins P. M., Feng A. S., Fay R. R., Popper A. N. 2007. Hearing and sound communication in amphibians. New York: Springer Verlag
Newberry R. C. 1995. Environmental enrichment: increasing the biological relevance of captive environments. Appl Anim Behav Sci, 44: 229–243
Parker G. 1983. Mate quality and mating decisions. In P. Bateson (ed.), Mate choice. Cambridge (UK): Cambridge University Press, p 141–164
Patricelli G. L., Uy J. A. C., Walsh G., Borgia G. 2002. Sexual selection: male displays adjusted to female’s response. Nature, 415: 279–280
Pincus S. 1995a. Approximate entropy (ApEn) as a complexity measure. Chaos, 5: 110–117
Pincus S. M. 1991. Approximate entropy as a measure of system complexity. Proc Nat Acad Sci USA, 88: 2297–2301
Pincus S. M. 1995b. Quantifying Complexity and Regularity of Neurobiological Systems. Methods Neurosci, 28: 336–363
Rickard N. S., Toukhsati S. R., Field S. E. 2005. The effect of music on cognitive performance: Insight from neurobiological and animal studies. Behav Cogn Neurosci Rev, 4: 235–261
Rose G. J., Gooler D. M. 2007. Function of the amphibian central auditory system. In P. M. Narins, A. S. Feng, R. R. Fay and A. N. Popper (Eds.), Hearing and Sound Communication in Amphibians. New York: Springer, p 250–290.
Ryser J. 1989. Weight loss, reproductive output, and the cost of reproduction in the common frog, Rana temporaria. Oecologia, 78: 264–268
Shine R. 1980. “Costs” of reproduction in reptiles. Oecologia, 46: 92–100
Sohn H., Kim I., Lee W., Peterson B. S., Hong H., Chae J.-H., Hong S., Jeong J. 2010. Linear and non-linear EEG analysis of adolescents with attention-deficit/hyperactivity disorder during a cognitive task. Clin Neurophysiol, 121: 1863–1870
Sohn H., Lee W., Kim I., Jeong J. 2007. Approximate entropy (ApEn) analysis of the EEG in attention-deficit/hyperactivity disorder (AD/HD) during cognitive tasks. In: World Congress on Medical Physics and Biomedical Engineering 2006. p 1083–1086
Sporns O. 2002. Network analysis, complexity, and brain function. Complexity, 8: 56–60
Sporns O., Tononi G., Edelman G. M. 2000. Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Networks, 13: 909–922
Stam C. J. 2005. Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin Neurophysiol, 116: 2266–2301
Striedter G. F. 2005. Principles of Brain Evolution. Sunderland, MA: Sinauer Associates Inc
Talebi N., Nasrabadi A. M., Curran T. 2012. Investigation of changes in EEG complexity during memory retrieval: the effect of midazolam. Cogn Neurodynamics, 6: 537–546
Tomberg C. 1999. Focal enhancement of chaotic strange attractor dimension in the left semantic (Wernicke) human cortex during reading without concomitant change in vigilance level. Neurosci Lett, 263: 177–180
Tononi G., Edelman G. M. 1998. Consciousness and complexity. Science, 282: 1846–1851
Utts J. M., Heckard R. F. 2006. Statistical ideas and methods. Belmont, CA: Thompson Higher Education
van Stokkum I. H., Meissen W. J. 1991. Measuring and modelling the response of auditory midbrain neurons in the grassfrog to temporally structured binaural stimuli. Hear Res, 52: 113–132
Varela F., Lachaux J.-P., Rodriguez E., Martinerie J. 2001. The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci, 2: 229–239
Wells K., Schwartz J. 2007. The behavioral ecology of anuran communication. In P. M. Narins, A. S. Feng, R. R. Fay and A. N. Popper (Eds.), Hearing and Sound Communication in Amphibians. New York: Springer Verlag, p 44–86
Wilczynski W., Endepols H. 2007. Central auditory pathways in anuran amphibians: the anatomical basis of hearing and sound communication. In P. M. Narins, A. S. Feng, R. R. Fay and A. N. Popper (Eds.), Hearing and sound communication in amphibians. New York: Springer, p 221–249
Wittenberger J. F. 1983. Tactics of mate choice. In P. Bateman (ed.), Mate choice. Cambridge: Cambridge University Press, p 435–447
Xu J., Gooler D., Feng A. 1996. Effects of sound direction on the processing of amplitude-modulated signals in the frog inferior colliculus. J Comp Physiol A, 178: 435–445
Xu J., Gooler D. M., Feng A. S. 1994. Single neurons in the frog inferior colliculus exhibit direction-dependent frequency selectivity to isointensity tone bursts. J Acoust Soc Am, 95: 2160–-2170
Xue F., Fang G. Z., Yang P., Zhao E., Brauth S. E., Tang Y. Z. 2015. The biological significance of acoustic stimuli determines ear preference in the music frog. J Exp Biol, 218: 740–747
Yang P., Fang G. Z., Xue F., Cui J. G., Brauth S. E., Tang Y. Z. 2014. Electroencephalographic signals synchronize with behaviors and are sexually dimorphic during the light-dark cycle in reproductive frogs. J Comp Physiol A, 200: 117–127
Zarjam P., Epps J., Chen F., Lovell N. H. 2013. Estimating cognitive workload using wavelet entropy-based features during an arithmetic task. Comput Biol Med, 43: 2186–2195
Zhang H., Xu J., Feng A. 1999. Effects of GABA-mediated inhibition on direction-dependent frequency tuning in the frog inferior colliculus. J. Comp Physiol A, 184: 85–98

更新日期/Last Update: 2016-09-25