[1].The Effects of Chronic Hypoxia on Thermoregulation and Metabolism in Phrynocephalus vlangalii[J].Asian Herpetological Research,2016,7(2):103-111.[doi:10.16373/j.cnki.ahr.150010]
 Weixin LI,Shiwei LIANG,Huihui WANG,et al.The Effects of Chronic Hypoxia on Thermoregulation and Metabolism in Phrynocephalus vlangalii[J].Asian Herpetological Reserch(AHR),2016,7(2):103-111.[doi:10.16373/j.cnki.ahr.150010]

The Effects of Chronic Hypoxia on Thermoregulation and Metabolism in Phrynocephalus vlangalii()

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]



The Effects of Chronic Hypoxia on Thermoregulation and Metabolism in Phrynocephalus vlangalii
Weixin LI Shiwei LIANG Huihui WANG Ying XIN Songsong LU Xiaolong TANG and Qiang CHEN*
School of Life Science, Lanzhou University, 222 Tian Shui South Road, Lanzhou, China
lizard hypoxia hypothermia standard metabolic rate enzyme activity
Phrynocephalus vlangalii are widely distributed on Tibetan plateau spanning diverse altitudes and habitats. In the present study, P. vlangalii were exposed to 8% oxygen concentration in a hypoxic chamber for 6 weeks. Then the body temperature (Tb), standard metabolic rate (SMR), heart rate and metabolic enzyme activities of the lizards were measured at 20°C and 30°C. The results indicated that hypoxia exposure decreased Tb, SMR and heart rate. Lactate dehydrogenase (LDH) activity of 8% O2 group became significant elevated in liver and skeletal muscle compared with control group at 20°C, but descended significantly in heart. Using electrophoresis we found that LDH contains five isozymes (LDH1, LDH2, LDH3, LDH4 and LDH5) and are expressed specifically in liver, skeletal muscle and heart. Citrate synthase (CS) activity in the liver also decreased at 20°C and 30°C. No significant difference of CS activity was found between the two groups in skeletal muscle and heart.


Boutilier R. G., Toews D. P. 1977. The effect of progressive hypoxia on respiration in the toad Bufo marinus. J Exp Biol, 68: 99?107
Branco L. G. S., Glass M. L., Wang T., Hoffmann A. 1993. Temperature and central chemoreceptor drive to ventilation in toad (Bufo paracnemis). Resp Physiol, 93: 337?346
Cadena V., Tattersall G. J. 2009. Decreased precision contributes to the hypoxic thermoregulatory response in lizards. J Exp Biol, 212: 137?144
Cooper R. U., Clough L. M., Farwell M. A., West T. L. 2002. Hypoxia-induced metabolic and antioxidant enzymatic activities in the estuarine fish (Leiostomus xanthurus). J Exp Mar Biol Ecol, 279: 1?20
Crocker C. D., Chapman L. J., Martinez M. L. 2013. Hypoxia-induced plasticity in the metabolic response of a widespread cichlid. Comp Biochem Phys B, 166: 141?147
Davor V., Luciano A. A., Joaquim J. V., Charles R. B. 2008. Helminth parasites of two sympatric lizards, Enyalius iheringii and E. Perditus (Leiosauridae), from an Atlantic Rainforest ares of southeastern Brazil. Acta Parasitol, 53(2): 222?225
Fuson A. L., Cowan D. F., Kanatous S. B., Polasek L. K., Davis R. W. 2003. Adaptations to diving hypoxia in the heart, kidneys and splanchnic organs of harbor seals (Phoca vitulina). J Exp Biol, 206: 4139?4154
Guo X., Wang Y. 2007. Partitioned Bayesian analyses, dispersal–vicariance analysis, and the biogeography of Chinese toad-headed lizards (Agamidae: Phrynocephalus): A re-evaluation. Mol Phylogenet Evol, 45: 643?662
He J., Xiu M., Tang X., Wang N., Xin Y., Li W., Chen Q. 2013a. Thermoregulatory and metabolic responses to hypoxia in the oviparous lizard (Phrynocephalus przewalskii). Comp Biochem Phys A, 165: 207?213
He J., Xiu M., Tang X., Yue F., Wang N., Yang S., Chen Q. 2013b. The Different Mechanisms of Hypoxic Acclimatization and Adaptation in Lizard Phrynocephalus vlangalii Living on Qinghai-Tibet plateau. J Exp Zool Part A, 319: 117?123
Hicks J. W., Wang T. 2004. Hypometabolism in reptiles: behavioural and physiological mechanisms that reduce aerobic demands. Resp Physiol Neurobi, 141: 261?271
Hicks J. W., Wood S. C. 1985. Temperature regulation in lizards: effects of hypoxia. Am J Physiol-Reg I, 248: R595?R600
Hochachka P., Buck L., Doll C., Land S. 1996. Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. P Natl A Sci, 93: 9493?9498
Hochachka P., Land S., Buck L. 1997. Oxygen sensing and signal transduction in metabolic defense against hypoxia: lessons from vertebrate facultative anaerobes. Comp Biochem Phys A, 118: 23?29
Hochachka P., Stanley C., Merkt J., Sumar-Kalinowski J. 1983. Metabolic meaning of elevated levels of oxidative enzymes in high altitude adapted animals: An interpretive hypothesis. Resp Physiol, 52: 303?313
Hochachka P. W., Somero G. N. 1984. Biochemical adaptation. Princeton University Press Princeton
Holbrook J. J., Liljas A., Steindel S. J., Rossmann M. G. 1975. Lactate dehydrogenase. The enzymes, 11: 191?292
Jackson D. C. 1968. Metabolic depression and oxygen depletion in the diving turtle. J Appl Physiol, 24: 503?509
Jackson D. C. 2007. Temperature and hypoxia in ectothermic tetrapods. J Therm Biol, 32: 125?133
Jin Y., Liu N., Li J. 2007. Elevational variation in body size of Phrynocephalus vlangalii in the North Qinghai-Xizang (Tibetan) plateau. Belg J Zool, 137: 197
Kuang L., Zheng Y., Lin Y., Xu Y., Jin S., Li Y., Dong F., Jiang Z. 2010. High-altitude adaptation of yak based on genetic variants and activity of lactate dehydrogenase-1. Biochem genet, 48: 418?427
Lutz P. L., Nilsson G. 1993. Metabolic transitions to anoxia in the turtle brain: role of neurotransmitters. In: The Vertebrate Gas Transport Cascade: Adaptations to Environment and Mode of Life, edited by J. Eduardo and P. W. Bicudo. Boca Raton, FL, CRC: 323?329
Mortola J. P. 2001. Respiratory physiology of newborn mammals: a comparative perspective. Baltimore, MD: Johns Hopkins University Press
Rollinson N., Tattersall G. J., Brooks R. J. 2008. Overwintering habitats of a northern population of Painted Turtles (Chrysemys picta): winter temperature selection and dissolved oxygen concentrations. J Herpetol, 42: 312?321
Sears M. W. 2005. Resting metabolic expenditure as a potential source of variation in growth rates of the sagebrush lizard. Comp Biochem Phys A, 140: 171?177
Sheafor B. A. 2003. Metabolic enzyme activities across an altitudinal gradient: an examination of pikas (genus Ochotona). J Exp Biol, 206: 1241?1249
Stecyk J. A., Farrell A. P. 2007. Effects of extracellular changes on spontaneous heart rate of normoxia-and anoxia-acclimated turtles (Trachemys scripta). J Exp Biol, 210: 421?431
Steiner A. A., Branco L. G. 2002. Hypoxia-induced anapyrexia: implications and putative mediators. Annu Rev Physiol, 64: 263?288
Storey K. B. 1998. Survival under stress: molecular mechanisms of metabolic rate depression in animals. S Afr J Zool, 33: 55?64
Tang X., Xin Y., Wang H., Li W., Zhang Y., Liang S., He J., Wang N., Ma M., Chen Q. 2013. Metabolic Characteristics and Response to High Altitude in Phrynocephalus erythrurus (Lacertilia: Agamidae), a Lizard Dwell at Altitudes Higher Than Any Other Living Lizards in the World. PloS one 8, e71976
Via J. D., Van den Thillart G., Cattani O., Cortesi P. 1998. Behavioural responses and biochemical correlates in Solea solea to gradual hypoxic exposure. Can J Zool, 76: 2108?2113
Virani N. A., Rees B. B. 2000. Oxygen consumption, blood lactate and inter-individual variation in the gulf killifish (Fundulus grandis), during hypoxia and recovery. Comp Biochem Phys A, 126: 397?405
Webster K. A. 2003. Evolution of the coordinate regulation of glycolytic enzyme genes by hypoxia. J Exp Biol, 206: 2911?2922
West T. G., Boutilier R. G. 1998. Metabolic suppression in anoxic frog muscle. J Comp Physiol B, 168: 273?280
Wood S. C. 1991. Interactions between hypoxia and hypothermia. Annu Rev Physiol, 53: 71?85
Wood S. C., Malvin G. M. 1991. Physiological significance of behavioral hypothermia in hypoxic toads (Bufo marinus). J Exp Biol, 159: 203?215
Wright P. A., Perry S. F., Moon T. W. 1989. Regulation of hepatic gluconeogenesis and glycogenolysis by catecholamines in rainbow trout during environmental hypoxia. J Exp Biol, 147: 169?188
Zhou B., Randall D., Lam P., Ip Y., Chew S. 2000. Metabolic adjustments in the common carp during prolonged hypoxia. J Fish Biol, 57: 1160?1171

更新日期/Last Update: 2016-06-25