[1].Is Habitat Preference Associated with Locomotor Performance in Multiocellated Racerunners (Eremias multiocellata) from a Desert Steppe?[J].Asian Herpetological Research,2015,6(2):143-149.[doi:10.16373/j.cnki.ahr.140094]
 Junhuai BI,Yang WANG,Shuran LI and Zhigao ZENG*.Is Habitat Preference Associated with Locomotor Performance in Multiocellated Racerunners (Eremias multiocellata) from a Desert Steppe?[J].Asian Herpetological Reserch(AHR),2015,6(2):143-149.[doi:10.16373/j.cnki.ahr.140094]

Is Habitat Preference Associated with Locomotor Performance in Multiocellated Racerunners (Eremias multiocellata) from a Desert Steppe?()

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]



Is Habitat Preference Associated with Locomotor Performance in Multiocellated Racerunners (Eremias multiocellata) from a Desert Steppe?
Junhuai BI1 Yang WANG2 Shuran LI2 and Zhigao ZENG2*
1 College of Life Sciences, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, China
2 Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
Habitat lizard locomotion performance substrate barrier
Locomotor performance in lizards is strongly affected by structural habitat. Understanding this relationship allows us to predict species distributions across habitat types. However, little information is available about the ecological role of the locomotion of multiocellated racerunner (Eremias multiocellata) in the desert steppe ecosystem of Inner Mongolia, China. Herein, we studied the effects of habitat structure on the locomotor performance of this lizard species in the field. We found that the sprint speed of this lizard declined significantly with increasing vegetation coverage. Manipulative experiments were further conducted to examine the effects of branch barriers and surface substrates on the sprint speed of the lizard. We found that the sprint speed was significantly influenced by the surface substrates and branch barriers, and there were no interactions between them. Branch barriers impeded sprint speed, and E. multiocellata showed better locomotor performance on sandy rather than loamy substrates. Our results indicate that E. multiocellata tends to occupy open areas with sandy substrates, but its locomotor performance is not closely associated with habitat preference.


Aerts P., Van Damme R., Vanhooydonck B., Zaaf A., Herrel A. 2000. Lizard locomotion: how morphology meets ecology. Netherlands J Zool, 50: 261–277
Borges-Landáez P. A., Shine R. 2003. Influence of toe-clipping on running speed in Eulamprus quoyii, an Australian scincid lizard. J Herpetol, 37: 592–595
Daly B. G., Dickman C. R., Crowther M. S. 2008. Causes of habitat divergence in two species of agamid lizards in arid central Australia. Ecology, 89: 65–76
Downes S., Shine R. 2001. Why does tail loss increase a lizard’s later vulnerability to snake predators? Ecology, 82: 1293–1303
Du W., Lin Z., Shou L., Ji X. 2005. Morphological correlates of locomotor performance in four species of lizards using different habitats. Zool Res, 26: 41–46 (In Chinese)
Du W. G., Shou L., Shen J. Y. 2006. Habitat selection in two sympatric Chinese skinks, Eumeces elegans and Sphenomorphus indicus: do thermal preferences matter??Can J Zool,?84: 1300–1306
Gilman C. A., Irschick D. J. 2013. Foils of flexion: the effects of perch compliance on lizard locomotion and perch choice in the wild. Funct Ecol, 27: 374–381
Higham T. E. 2007. The integration of locomotion and prey capture in vertebrates: morphology, behavior, and performance. Integr Comp Biol, 47: 82–95
Higham T. E., Russell, A. P. 2010. Divergence in locomotor performance, ecology, and morphology between two sympatric sister species of desert-dwelling gecko. Biol J Linn Soc, 101: 860–869
Huang S.-P., Tu M.-C. 2009. Locomotor and Elevational Distribution of a Mountainous Lizard, Takydromus hsuehshanensis, in Taiwan. Zool Stud, 48: 477–484
Husak J. F., Fox S. F., Lovern M. B., Van Den Bussche R. A. 2006. Faster lizards sire more offspring: sexual selection on whole-animal performance. Evolution, 60: 2122–2130
Irschick D. J., Losos J. B. 1998. A comparative analysis of the ecological significance of maximal locomotor performance in Caribbean Anolis lizards. Evolution, 52: 219–226
Irschick D. J., Losos J. B. 1999. Do lizards avoid habitats in which performance is submaximal? The relationship between sprinting capabilities and structural habitat use in Caribbean anoles. Am Nat, 154: 293–305
Irschick D. J., Jayne B. C. 1998. Effects of incline on speed, acceleration, body posture and hindlimb kinematics in two species of lizard Callisaurus draconoides and Uma scoparia. J Exp Biol, 201: 273–287
Jayne B. C., Ellis R. V. 1998. How inclines affect the escape behaviour of a dune-dwelling lizard, Uma scoparia. Anim Behav, 55: 1115–1130
Jayne B. C., Irschick D. J. 2000. A field study of incline use and preferred speeds for the locomotion of lizards. Ecology, 81: 2969–2983
Kohlsdorf T., Biewener, A. A. 2006. Negotiating obstacles: running kinematics of the lizard Sceloporus malachiticus. J Zool, 270: 359–371
Korff W. L., McHenry M. J. 2011. Environmental differences in substrate mechanics do not affect sprinting performance in sand lizards (Uma scoparia and Callisaurus draconoides). J Exp Biol, 214: 122–130
Li C., Lian X., Bi J., Fang H., Maul T. L., Jiang Z. 2011. Effects of sand grain size and morphological traits on running speed of toad-headed lizard Phrynocephalus frontalis. J Arid Environ, 75: 1038–1042
Li H., Qu Y. F., Ding G. H., Ji X. 2011. Life-history variation with respect to experienced thermal environments in the lizard, Eremias multiocellata (Lacertidae). Zool Sci, 28: 332–338
Lisi?i? D., Drakuli? S., Herrel A., ?iki? D., Benkovi? V.,? Tadi?, Z. 2012. Effect of competition on habitat utilization in two temperate climate gecko species. Ecol Res, 27: 551–560
López P., Martín J. 2013. Effects of microhabitat-dependent predation risk on vigilance during intermittent locomotion in Psammodromus algirus lizards. Ethology, 119: 316–324
Losos J. B., Irschick D. J. 1996. The effects of perch diameter on the escape behavior of Anolis lizards: laboratory-based predictions and field tests. Anim Behav, 51: 593–602
Mattingly W. B., Jayne B. C. 2004. Resource use in arboreal habitats: structure affects locomotion of four ecomorphs of Anolis lizards. Ecology, 85: 1111–1124
Mcelroy E. J., Meyers J. J., Reilly S. M., Irschick, D. J. 2007. Dissecting the effects of behaviour and habitat on the locomotion of a lizard (Urosaurus ornatus). Anim Behav, 73: 359–365
McLaughlin J. F., Roughgarden J. 1989. Avian predation on Anolis lizards in the Northeastern Caribbean–an inter-island contrast. Ecology, 70: 617–628
Perry G., LeVering K., Girard I., Garland Jr. T. 2004. Locomotor performance and social dominance in male Anolis cristatellus. Anim Behav, 67: 37–47
Pianka E. R. 1986. Ecology and natural history of desert lizards. Princeton: Princeton University Press
Pounds A. J. 1988. Ecomorphology, locomotion, and habitat structure: patterns in a tropical mainland Anolis community. Ecol Monogr, 58: 299–320
Roches S. D., Robertson J. M., Harmon L. J., Rosenblum, E. B. 2011. Ecological release in White Sands lizards. Ecol Evol, 1: 571–578
Sun B., Tang W., Zeng Z., Du W. 2014. The seasonal acclimatisation of locomotion in a terrestrial reptile, Plestiodon chinensis (Scincidae). Asian Herpetol Res, 5: 197–203
Tang X. L., Yue F., Yan X. F., Zhang D. J., Xin Y., Wang C., Chen Q. 2012. Effects of gestation temperature on offspring sex and maternal reproduction in aviviparous lizard (Eremias multiocellata) living at high altitude. J Therm Biol, 37: 438–444
Turchin P. 1998. Quantitative analysis of movement: measuring and modeling population redistribution in animals and plants. Sunderland: Sinauer Associates Inc
Vanhooydonck B., Andronescu A., Herrel A., Irschick, D. J. 2005. Effects of substrate structure on speed and acceleration capacity in climbing geckos. Biol J Linn Soc, 85: 385–393
Vanhooydonck B., Van Damme, R. 2003. Relationships between locomotor performance, microhabitat use and antipredator behaviour in lacertid lizards. Funct Ecol, 17: 160–169
Yan X. F., Tang X. L., Yue F., Zhang D. J., Xin Y., Wang C., Chen Q. 2011. Influence of ambient temperature on maternal thermoregulation and neonate phenotypes in a viviparous lizard, Eremias multiocellata, during the gestation period. J Therm Biol, 36: 187–192
Zaady E., Bouskila, A. 2002. Lizard burrows association with successional stages of biological soil crusts in an arid sandy region. J Arid Environ, 50: 235–246
Zeng Z. G., Bi J. H., Li S. R., Chen S. Y., Pike D. A., Gao Y., Du W. G. 2014. Effects of habitat alteration on lizard community and food web structure in a desert steppe ecosystem. Biol Conserv, 179: 86–92
Zhang D. J., Tang X. L., Yue F., Chen Z., Li R. D., Chen Q. 2010. Effect of gestation temperature on sexual and morphological phenotypes of offspring in a viviparous lizard, Eremias multiocellata. J Therm Biol, 35: 129–133
Zhao E. M., Zhao K. T., Zhou K. Y. 1999. Fauna Sinica, Reptilia Vol. 2, Squamata. Beijing: Chinese Science Press

更新日期/Last Update: 2016-01-25