[1].Toxic Effects of Three Heavy Metallic Ions on Rana zhenhaiensis Tadpoles[J].Asian Herpetological Research,2015,6(2):132-142.[doi:10.16373/j.cnki.ahr.140092]
 Li WEI,Guohua DING,Sainan GUO,et al.Toxic Effects of Three Heavy Metallic Ions on Rana zhenhaiensis Tadpoles[J].Asian Herpetological Reserch(AHR),2015,6(2):132-142.[doi:10.16373/j.cnki.ahr.140092]
点击复制

Toxic Effects of Three Heavy Metallic Ions on Rana zhenhaiensis Tadpoles()
分享到:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

卷:
6
期数:
2015年2期
页码:
132-142
栏目:
出版日期:
2015-06-25

文章信息/Info

Title:
Toxic Effects of Three Heavy Metallic Ions on Rana zhenhaiensis Tadpoles
文章编号:
AHR-2014-0092
Author(s):
Li WEI1 Guohua DING1 Sainan GUO1 Meiling TONG1 Wenjun CHEN1 Jon FLANDERS2 Weiwei SHAO1 and Zhihua LIN1*
1 College of Ecology, Lishui University, Lishui 323000, Zhejiang, China
2 School of Biological Sciences, Bristol Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ. UK
Keywords:
Acute toxicity micronucleus chronic toxicity growth metal pollution Rana zhenhaiensis
DOI:
10.16373/j.cnki.ahr.140092
Abstract:
Heavy metal pollution is widespread in some areas of China and results in contamination of land, water, and air with which all living organisms interact. In this study, we used three heavy metallic ions (Cu2+, Pb2+ and Zn2+) to assess their toxicity effects on mortality, blood biomarker and growth traits (body length and body mass) of Rana zhenhaiensis tadpoles. The results showed that the toxicity levels of the three metallic ions were different when conducted with different experiment designs. For acute toxicity tests, Cu2+ was the most toxic with the highest tadpole mortality. The mortalities of tadpoles showed significant differences among the treatments at the same exposure time endpoints (24, 48, 72 and 96h). Results from repeated measures ANOVA indicated that metallic ion concentration, exposure time and their interactions significantly affected the mortalities of R. zhenhaiensis tadpoles. Also, the toxicity effects of all binary combinations of the three metallic ion treatments showed synergism. The half lethal concentrations (LC50) decreased with increasing exposure time during the experimental period, and the safe concentration (SC) values of Cu2+, Pb2+ and Zn2+ were different from each other. Combined and compared LC50 values with previous data reported, it is suggestes that the toxicity levels of metal pollution to anuran tadpoles should be species-and age-related. For blood biomarker tests, Zn2+ was the most toxic with the highest total frequencies of abnormal erythrocytic nucleus. All three metallic ions caused higher abnormal erythrocytic nucleus compared with control groups. In a chronic toxicity test, Pb2+ was the most toxic with lowest growth traits. Survival rate (except for 18 days), total body length and body mass showed significant differences among the treatments. These findings indicated that tadpoles of R. zhenhaiensis should be as a bioindicator of heavy metals pollution.

参考文献/References:

Chen N., Hao J. S., Wang Y., Su C. Y., Wu B. F. 2007. Single and binary-combined acute toxicity of heavy metal iron Hg2+, Cu2+, Cd2+, Ag+, Zn2+ and Pb2+ to Hydra. J Biol, 24(3): 32–35
Chen Z. X., Fang X. Q., Lin L., Geng B. R. 2011. Acute toxicity of emamectin benzoate on Rana zhenhaiensis tadpoles. J Ningde Teach Coll (Nat Sci Edit), 23(1): 21–23
Costa P. M., Neuparth T. S., Caeiro S., Lobo J., Martins M., Ferreira A. M., Caetano M., Vale C., Del Valls T. A., Costa M. H. 2011. Assessment of the genotoxic potential of contaminated estuarine sediments in fish peripheral blood: Laboratory versus in situ studies. Environ Res, 111(1): 25–36
Eaton J. G. 1973. Chronic toxicity of a copper, cadmium and zinc mixture to the fithead minnow (Pimcobales promelas rafinesque). Wat Res, 7(11): 1723–1736
Ezemonye L. I. N., Tongo I. 2009. Lethal and sublethal effects of atrazine to amphibian larvae. Jordan J Biol Sci, 2(1): 29–36
Guilherme S., Válega M., Pereira M. E., Santos M. A., Pacheco M. 2008. Erythrocytic nuclear abnormalities in wild and caged fish (Liza aurata) along an environmental mercury contamination gradient. Ecotoxicol Environ Saf, 70(3): 411–421
Huang M. Y., Duan R. Y., Ji X. 2014. Chronic effects of environmentally-relevant concentrations of lead in Pelophylax nigromaculata tadpoles: Threshold dose and adverse effects. Ecotoxicol Environ Saf, 104: 310–316
Hussain Q. A., Pandit A. K. 2012. Global amphibian declines: A review. Inter J Biodiv Conserv, 4(10): 348–357
Ilizaliturri-Hernández C. A., González-Mille D. J., Mejía-Saavedra J., Espinosa-Reyes G., Torres-Dosal A., Pérez-Maldonado I. 2013. Blood lead levels, δ-ALAD inhibition, and hemoglobin content in blood of giant toad (Rhinella marina) to asses lead exposure in three areas surrounding an industrial complex in Coatzacoalcos, Veracruz, Mexico. Environ Monit Assess, 185(2): 1685–1698
Jackson R. N., Baird D., Eis S. 2005. The effect of the heavy metals lead (Pb2+) and zinc (Zn2+) on the brood and larval development of the burrowing crustacean, Callianassa kraussi. Water SA, 31(1): 107–116
Jia X. Y., Dong A. H., Yang Y. Q. 2005. Acute and joint toxicities of copper, zinc and triazophos to Rana limnocharis Boie tadpole. Res Environ Sci, 18(5): 26–30
Jiang B. Q., Chen W. T., Li D. F. 2008. Effect of heavy metal iron on growth of tadpole of toad (Bufo melanostictus Schneider). J South Chin Nor Univ (Nat Sci Edit), 2: 100–105
Johnson A., Carew E., Sloman K. A. 2007. The effects of copper on the morphological and functional development of zebrafish embryos. Aquat Toxicol, 84(4): 431–438
Khangarot B. S., Sehgal A., Bhasin M. K. 1985. ‘‘Man and Biosphere’’–Studies on the Sikkim Himalayas. Part 5: Acute toxicity of selected heavy metals on the tadpoles of Rana hexadactyla. Acta Hydrochim Hydrobiol, 13(2): 259–63
Li H. M., Tian X. J. 2010. The effects of nine chemicals factors on the subsistence of Rana catesbeiana tadpoles. J Anhui Agricult Sci, 38(2): 769–771
Mgbaeruhu J. E. 2002. The influence of pH on the toxicity domestic detergents against tadpoles of Rana rana and fingerlings of Tilapia niloticus. MSc thesis University of Lagos. 67p
Natale G. S., Ammassari L. L., Basso N. G., Ronco A. E. 2006. Acute and chronic effects of Cr(VI) on Hypsiboas pulchellus embryos and tadpoles. Dis Aquat Organ, 72(3): 261–267
Rao I. J., Madhyastha M. N. 1987. Toxicities of some heavy metals to the tadpoles of frog, Microhyla ornata (Dumeril & Bibron). Toxicol Lett, 36(2): 205–208
Rosenberg C. E., Perí S. I., Arrieta M. A., Fink N. E., Salibián A. 1998. Red blood cell osmotic fragility in Bufo arenarum exposed to lead. Arch Physiol Biochem, 106(1): 19–24
Shi G., Wang J. X., Wang R. X. 2007. Toxic Effects of Cu2+ on Rana Chensinensis tadpole growth and development. J Jilin Nor Univ (Nat Sci Edit), 3: 71–73
Shuhaimi-Othman M., Nadzifah N. S., Umirah N. S., Ahmad A. K. 2012a. Toxicity of metals to tadpoles of the common Sunda toad, Duttaphrynus melanostictus. Toxicol Environ Chem, 94(2): 364–376
Shuhaimi-Othman M., Nadzifah Y., Umirah N. S., Ahmad A. K. 2012b. Toxicity of metals to an aquatic worm, Nais slinguis (Oligochaeta, Naididae). Res J Environ Toxicol, 6(4): 122–132
Stuart S. N., Chanson J. S., Cox N. A., Young B. E., Rodrigues A. S., Fischman D. L., Waller R. W. 2004. Status and trends of amphibian declines and extinctions worldwide. Science, 306(5702): 1783–1786
Vertucci F. A., Corn P. S. 1996. Evaluation of episodol acidification and amphibian declines in the rocky mountains. Ecol Appl, 6(2): 449–457
Wang J. X., Wang R. X. 2008. Toxic effects of Pb2+ on growth and development of Rana chensinensis tadpole. Acta Agricult Zhejiangensis, 20(3): 203–207
Wang X. Y., Lu X. Y., Li C. M., Gao W. P., Gao M. 2001. Toxicity of heavy metal irons to embryos and larvae of Rana nigromaculata. Sichuan J Zool, 21(2): 59–61
Wei L., Shao W. W., Ding G. H., Fan X. L., Yu M. L., Lin Z. H. 2014. Acute and joint toxicity of three agrochemicals to Chinese tiger frog (Hoplobatrachus chinensis) tadpoles. Zool Res, 35(4): 272–279
Xia K., Zhao H. F., Wu M. Y., Wang H. Y. 2012. Chronic toxicity of copper on embryo development in Chinese toad, Bufo gargarizans. Chemosphere, 87(11): 1395–1402
Yang Y. Q., Jia X. Y. 2006. Joint toxicity of Cu2+, Zn2+ and Cd2+ to tadpole of Bufo bufo gargarizans. Chin J Appl Environ Biol, 12(3): 356–359
Yao D., Wan L. Y., Geng B. R., Huang H., Zhang Q. J. 2004. Acute toxicity of Cu2+ to Rana japonica tadpoles. J Fujian Nor Univ (Nat Sci Edit), 20(4): 117–120
Zhang M. H. 2009. The toxic effect analysis of heavy metal ions on tadpoles of Pelophylax nigromaculatus. J Guiyang Coll (Nat Sci Edit), 4(1): 19–23
Zhang Y. L., Yuan J., Chen L. P., Shao H. 2011. Joint toxicity experiment of three heavy metal on fry of Carassius auratus. Heibei Fish, 39(2): 24–27
Zhang Y. M., Huang D. J., Zhao D. Q., Long J., Song G., Li A. N. 2007. Long-term toxicity effects of cadmium and lead on Bufo raddei tadpoles. Bull Environ Contam Toxicol, 79(2): 178–183
Zhong B. J., Geng Y., Geng B. R. 2011. Acute toxicity of triazophos to Rana japonica tadpoles and its effects on growth. Herpetol Sinica, 11: 209–215
Zhou F., Jiang A.W., Lu Z. 2005. A new record of amphibian species in Guangxi-Rana zhenhaiensis. J Guangxi Agricult Biol Sci, 24(3): 248
Zhou X. R., Shen H. F., Pan Z. J., Wang L. J. 2008. Study on micronuclear and nuclear abnormalities induced by Pb2+ and Cu2+ in tadpoles erythrocyte. J Anhui Agricult Sci, 36(14): 5842–5844
Zhou Y. X., Zhang Z. S. 1989. Toxicity testing methods of aquatic organism. Beijing: Chinese Agricultural Press

更新日期/Last Update: 2016-01-25