[1].[J].Asian Herpetological Research,2014,5(4):276-280.[doi:10.3724/SP.J.1245.2014.00276]
 Zheng WANG,Longhui LIN and Xiang JI*.Unhatched and Hatched Eggshells of the Chinese Cobra Naja atra[J].Asian Herpetological Research(AHR),2014,5(4):276-280.[doi:10.3724/SP.J.1245.2014.00276]
点击复制

()
分享到:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

卷:
5
期数:
2014年4期
页码:
276-280
栏目:
Original Article
出版日期:
2014-12-25

文章信息/Info

Title:
Unhatched and Hatched Eggshells of the Chinese Cobra Naja atra
文章编号:
AHR-2014-0048
Author(s):
Zheng WANG12 Longhui LIN3 and Xiang JI2*
1 College of Biological and Environmental Sciences, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
2 Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
3 Hangzhou Key Laboratory for Animal Adaptation and Evolution, School of Life Sciences, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
Keywords:
Elapidae Naja atra eggshell structure egg incubation X-ray diffraction spectra minerals
DOI:
10.3724/SP.J.1245.2014.00276
Abstract:
Changes in structure and composition of the eggshell resulting from embryonic mobilization of minerals from the eggshell are found in all oviparous reptiles studied thus far. In this study, we measured samples of unhatched and hatched eggshells of the Chinese cobra Naja atra to determine the percentage of ash and the phase composition of calcium carbonate. The mean percentage of ash was significantly higher in unhatched eggshells (24.6%) than in hatched eggshells (22.3%). The dominant phase in unhatched eggshells was the calcite form of calcium carbonate. In addition to the peaks of calcite, a few small peaks were found to be caused by the aragonite and vaterite phases of calcium carbonate, implying that there are small amounts of aragonite and vaterite in the eggshell. The concentration of the various phases calculated from the intensity of the X-ray diffraction spectra allowed the estimation that percentages of calcite, aragonite and vaterite were about 92%, 4% and 4%, respectively. Hatched eggshells produced similar spectral characteristics as unhatched eggshells, with one exception. The dominant phase composition in the hatched eggshell was also calcite, but the amount of the aragonite phase had a marked increase. Our study adds evidence that embryonic mobilization of minerals from the eggshell may result in changes in structure of the eggshell.

参考文献/References:

Andrews R. M., Mathies T. 2000. Natural history of reptilian development: constraints on the evolution of viviparity. BioScience, 50: 227–238
Bustard H. R., Jenkins N. K., Simkiss K. 1969. Some analyses of artificially incubated eggs and hatchlings of green and loggerhead sea turtles. J Zool, 158: 311?315
Cai Y., Zhou T., Ji X. 2007. Embryonic growth and mobilization of energy and material in oviposited eggs of the red-necked keelback, Rhabdophis tigrinus lateralis. Comp Biochem Physiol A, 147: 57?63
Deeming D. C. 1988. Eggshell structure of lizards of two sub-families of the Gekkonidae. Herpetol J, 1: 230?234
Du W. G., Ji X., Xu W. Q. 2001. Dynamics of material and energy during incubation in the soft-shelled turtle (Pelodiscus sinensis). Acta Zool Sin, 47: 371?375
Heulin B., Stewart J. R., Surget-Groba Y., Bellaus P., Jouan F., Lancien G., Deunff J. 2005. Development of the uterine shell glands during the preovulatory and early gestation periods in oviparous and viviparous Lacerta vivipara. J Morphol, 266: 80?93
Jenkins N. K. 1975. Chemical composition of the eggs of the crocodile (Crocodylus novaeguineae). Comp Biochem Physiol A, 51: 891?895
Ji X., Bra?a F. 1999. The influence of thermal and hydric environments on incubating eggs and embryonic use of energy and nutrients in the wall lizard Podarcis muralis. Comp Biochem Physiol A, 124: 205?213
Ji X., Du W. G. 2001. Effects of thermal and hydric conditions on incubating eggs and hatchling traits in the cobra, Naja naja atra. J Herpetol, 35: 186?194
Ji X., Sun P. Y. 2000. Embryonic use of energy and post-hatching yolk in the gray rat snake, Ptyas korros (Colubridae). Herpetol J, 10: 13?17
Ji X., Sun P. Y., Fu S. Y., Zhang H. S. 1997a. Utilization of energy and nutrients in incubating eggs and post-hatching yolk in a colubrid snake, Elaphe carinata. Herpetol J, 7: 7?12
Ji X., Sun P. Y., Fu S. Y., Zhang H. S. 1999a. Utilization of egg energy and material during incubation and post-hatching yolk in a colubrid snake, Elaphe taeniura. Asiatic Herpetol Res, 8: 53?59
Ji X., Sun P. Y., Zhang H. S., Fu S. Y. 1997b. Incubation and utilization of energy and material during embryonic development in eggs of Naja naja atra. J Herpetol, 31: 302?306
Ji X., Wang Z. W. 2005. Geographic variation in reproductive traits and trade-offs between size and number of eggs of the Chinese cobra, Naja atra. Biol J Linn Soc, 85: 27?40
Ji X., Xu X. F., Lin Z. H. 1999b. Influence of incubation temperature on characteristics of Dinodon rufozonatum (Reptilia: Colubridae) hatchlings, with comments on the function of residual yolk. Zool Res, 20: 342?346
Lin L. H., Li H., An H., Ji X. 2008. Do temperature fluctuations during incubation always play an important role in shaping the phenotype of hatchling reptiles? J Therm Biol, 33: 193?199
Lin Z. H., Ji X. 2004. Reproductive output and effects of incubation thermal environments on hatchling phenotypes of mucous ratsnake (Ptyas mucous). Acta Zool Sin, 50: 541?550
Lin Z. H., Ji X., Luo L. G., Ma X. M. 2005. Incubation temperature affects hatching success, embryonic expenditure of energy and hatchling phenotypes of a prolonged egg-retaining snake, Deinagkistrodon acutus (Viperidae). J Therm Biol, 30: 289?297
Lu H. L., Hu R. B., Ji X. 2009. Embryonic growth and mobilization of energy and material during incubation in the checkered keelback snake, Xenochrophis piscator. Comp Biochem Physiol A, 152: 214?218
Packard G. C., Packard M. J. 1988. The physiological ecology of reptilian eggs and embryos. In Gans C., Huey R. B. (Eds.), Biology of the Reptilia, Vol. 16, Ecology B, Defense and Life History. New York: Alan R. Liss, 523–605
Packard M. J. 1994. Patterns of mobilization and deposition of calcium in embryos of oviparous, amniotic vertebrates. Isr J Zool, 40: 481–492
Packard M. J., DeMarco V. G. 1991. Eggshell structure and formation in eggs of oviparous reptiles. In Deeming D. C., Ferguson M. W. J. (Eds.), Egg Incubation: Its Effects on Embryonic Development in Birds and Reptiles. Cambridge: Cambridge University Press, 53–69
Packard M. J., Packard G. C. 1984. Comparative aspects of calcium metabolism in embryonic reptiles and birds. In Seymour R. S. (Ed.), Respiration and Metabolism of Embryonic Vertebrates. Dordrecht, The Netherlands: W. Junk Publishing, 155–179
Packard M. J., Packard G. C. 1988. Sources of calcium and phosphorus during embryogenesis in bullsnakes (Pituophis melanoleucus). J Exp Zool, 246: 132–138
Packard M. J., Packard G. C. 1989. Mobilization of calcium, phosphorus, and magnesium by embryonic alligators (Alligator mississippiensis). Am J Physiol, 257: R1541–R1547
Packard M. J., Packard G. C., Gutzke W. H. N. 1984. Calcium metabolism in embryos of the oviparous snake Coluber constrictor. J Exp Biol, 110: 99–112
Shine R. 1983. Reptilian reproductive modes: the oviparity-viviparity continuum. Herpetologica, 39: 1–8
Shadrix C. A., Crotzer D. R., MaKinney S. L., Stewart J. R. 1994. Embryonic growth and calcium mobilization in oviposited eggs of the scincid lizard, Eumeces fasciatus. Copeia, 1994: 493?498
Stewart J. R., Ecay T. W. 2010. Patterns of maternal provision and embryonic mobilization of calcium in oviparous and viviparous squamate reptiles. Herpetol Conserv Biol, 5: 341–359
Stewart J. R., Ecay T. W., Heulin B. 2009. Calcium provision to oviparous and viviparous embryos of the reproductively bimodal lizard Lacerta (Zootoca) vivipara. J Exp Biol, 212: 2520–2524
Stewart J. R., Ecay T. W., Heulin B., Fregoso S. P., Linville B. J. 2011. Developmental expression of calcium transport proteins in extraembryonic membranes of oviparous and viviparous Zootoca vivipara (Lacertilia, Lacertidae). J Exp Biol, 214: 2999–3004
Stewart J. R., Mathieson A. N., Ecay T. W. , Herbert J. F., Parker S. L., Thompson M. B. 2010. Uterine and eggshell structure and histochemistry in a lizard with prolonged uterine egg retention (Lacertilia, Scincidae, Saiphos). J Morphol, 271: 1342–1351
Wüster W., Golay P., Warrell D. A. 1997. Synopsis of recent developments in venomous snake systematics. Toxicon, 35: 319–340
Xu X. F., Wu Y. L., Zhang J. L. 2004. Dynamics of material and energy during incubation in the grass lizards Takydromus septentrionalis. Acta Zool Sin, 50: 37–42
Zehr D. R. 1962. Stages in the normal development of the common garter snake, Thamnophis sirtalis sirtalis. Copeia, 1962: 322–329
Zhao Q., Zhang J. Q., Huang H. Y., Ji X. 1997. Utilization of egg energy and material by Rhabdophis tigrinus lateralis during incubation. J Hangzhou Normal Coll (Nat Sci), 14(3): 60?64

更新日期/Last Update: 2016-01-25