[1].[J].Asian Herpetological Research,2014,5(3):137-149.[doi:10.3724/SP.J.1245.2014.00137]
 Xiaohe WANG,Kevin MESSENGER,Ermi ZHAO* and Chaodong ZHU*.Reclassification of Oligodon ningshaanensis Yuan, 1983 (Ophidia: Colubridae) into a New Genus, Stichophanes gen. nov. with Description on Its Malacophagous Behavior[J].Asian Herpetological Research(AHR),2014,5(3):137-149.[doi:10.3724/SP.J.1245.2014.00137]


Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

Original Article


Reclassification of Oligodon ningshaanensis Yuan, 1983 (Ophidia: Colubridae) into a New Genus, Stichophanes gen. nov. with Description on Its Malacophagous Behavior
Xiaohe WANG1 Kevin MESSENGER2 Ermi ZHAO1* and Chaodong ZHU3*
1 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
2 Department of Biological and Environmental Sciences, Alabama A and M University, Normal 35801, Alabama, USA
3 Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
Stichophanes gen. nov. ningshaanensis Dipsadinae molecular phylogeny hemipenial morphology mollusks-predator
The complete mitochondrial cytb gene and the partial nuclear c-mos gene of Oligodon ningshaanensis Yuan, 1983 were sequenced and used for reconstructing the phylogenetic relationship of this taxon amongst alethinophidian snakes. Its strong affinity to the New World subfamily Dipsadinae and the Old World species Thermophis baileyi was inferred. Hemipenial morphology found by authors conflicts with the original description and its similarity with those of the dipsadid snakes is in accordance with our molecular results. Feeding tests show that O. ningshaanensis is a malacophagous predator, which is another matchless character for this species. This behavior is described and compared with other known slug- and snail-feeding snakes. The discovery of the particular position of our subject indicates that erecting a new genus is necessary accommodate this unique species.


Agudo-Padrón A. I. 2013. Snail-eating snakes ecology, diversity, distribution and alimentary preferences in Brazil. J Environ Sci Wat Resour, 2(8): 238–244
Britt E. J., Clark A. J., Bennett A. F. 2009. Dental morphologies in gartersnakes (Thamnophis) and their connection to dietary preferences. J Herpetol, 43(2): 252–259
Britt E. J., Hicks J. W., Bennett A. F. 2006. The energetic consequences of dietary specialization in populations of the garter snake, Thamnophis elegans. J Exp Biol, 209(16): 3164–3169
Chen B., Wang Y. 2002. Introduction a method of Clearing and Staining. Bull Biol, 37(4): 57 (In Chinese)
Chen X., Huang S., Guo P., Colli G. R., Nieto Montes de Oca A., Vitt L. J., Pyron R. A., Burbrink F. T. 2013. Understanding the formation of ancient intertropical disjunct distributions using Asian and Neotropical hinged-teeth snakes (Sibynophis and Scaphiodontophis: Serpentes: Colubridae). Mol Phylogenet Evol, 66(1): 254–261
Cole C. J., Hardy L. M. 1981. Systematics of North American colubrid snakes related to Tantilla planiceps (Blainville). Bull AMNH, v. 171, article 3
Coleman K., Rothfuss L. A., Ota H., Kardong K. V. 1993. Kinematics of egg-eating by the specialized Taiwan snake Oligodon formosanus (Colubridae). J Herpetol, 27(3): 320–327
Consul A., Eger S., Kwet, A. 2009. The Grass Snake, Natrix natrix natrix (Squamata: Colubridae), as a predator of the Great Ramshorn Snail, Planorbarius c. corneus (Gastropoda: Planorbidae). Salamandra, 45(1): 50–52
Cope E. D. 1894. The classi?cation of snakes. Am Nat, 28: 831–844
Cope E. D. 1895. The classi?cation of the Ophidia. Trans Am Philos Soc, 28: 186–219
de Queiroz A., Lawson R., Lemos-Espinal J. A. 2002. Phylogenetic relationships of North American Garter Snakes (Thamnophis) based on four mitochondrial genes: How much DNA sequence is enough? Mol Phylogenet Evol, 22(2): 315–329
Dowling H. G. 1967. Hemipenes and other characters in colubrid classification. Herpetologica, 138–142
Edgar R. C. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res, 32(5): 1792–1797
Forstner M. R., Davis S. K., Arévalo E. 1995. Support for the hypothesis of anguimorph ancestry for the suborder Serpentes from phylogenetic analysis of mitochondrial DNA sequences. Mol Phylogenet Evol, 4(1): 93–102
Gans C. 1975. Reptiles of the world. New York: Bantam Books, 159pp
Gotz M. 2002. The feeding behavior of the snail-eating snake Pareas carinatus Wagler 1830 (Squamata: Colubridae). Amphibia Reptilia, 23(4): 487–494
Green M. 2010. Molecular phylogeny of the snake genus Oligodon (Serpentes: Colubridae), with an annotated checklist and key. M.Sc. Thesis. University of Toronto. 169pp
Green M. D., Orlov N. L., Murphy R. W. 2010. Toward a phylogeny of the Kukri snakes, genus Oligodon. Asian Herpetol Res, 1(1): 1–21
Guo P., Liu Q., Xu Y., Jiang K., Hou M., Ding L., Pyron R. A., Burbrink, F. T. 2012. Out of Asia: Natricine snakes support the Cenozoic Beringian dispersal hypothesis. Mol Phylogenet Evol, 63(3): 825–833
Guo Y., Wu Y., He S., Shi H., Zhao E. 2011. Systematics and molecular phylogenetics of Asian snail-eating snakes (Pareatidae). Zootaxa, 1175–5326
He M., Feng J. C., Liu S. Y., Guo P., Zhao E. M. 2009. The phylogenetic position of Thermophis (Serpentes: Colubridae), an endemic snake from the Qinghai-Xizang Plateau, China. J Nat Hist, 43(7–8): 479–488
He M., Feng J., Zhao E. 2010. The complete mitochondrial genome of the Sichuan hot-spring keel-back (Thermophis zhaoermii; Serpentes: Colubridae) and a mitogenomic phylogeny of the snakes. Mitochondrial DNA, 21(1): 8–18
Hoso M., Asami T., Hori M. 2007. Right-handed snakes: Convergent evolution of asymmetry for functional specialization. Biol Lett, 3(2): 169–173
Hoso M., Hori M. 2008. Divergent shell shape as an antipredator adaptation in tropical land snails. The Am Naturalist, 172(5): 726–732
Hu S., Zhao E. M. 1987. Atlas of China Animals—Amphibians and Reptiles, 2nd edition. Beijing: Science Publishing House, 110 pp (In Chinese)
Huang S., Liu S., Guo P., Zhang Y., Zhao E. 2009. What are the closest relatives of the hot-spring snakes (Colubridae, Thermophis), the relict species endemic to the Tibetan Plateau? Mol Phylogenet Evol, 51(3): 438–446
Inger R. F., Marx H. 1962. Variation of hemipenis and cloaca in the colubrid snake Calamaria lumbricoidea. Syst Zool, 11(1): 32–3
Jiang K. 2010. A Method for Evaginating the Hemipenis of Preserved Snakes. Sichuan J Zool, 29(1): 122–123 (In Chinese)
Judd W. W. 1954. Observations on the food of the little brownsnake, Storeria dekayi, at London, Ontario. Copeia, 1954: 62–64
Keiser E. D. 1974. A systematic study of the neotropical vine snake Oxybelis aeneus (Wagler). Texas Memorial Museum, 51pp
Keogh J. S. 1999. Evolutionary implications of hemipenial morphology in the terrestrial Australian elapid snakes. Zool J Linn Soc, 125(2): 239–278
Laporta-Ferreira I. L., Salom?o M. D. G. 2004. Reptilian predators of terrestrial gastropods. In Barker G. M. (Ed.), Natural enemies of terrestrial molluscs. CABI, 427–482
Li L., Liang G. 2007. Microdermatoglyphis patterns of Oligodon ningshanensis. J Xian Univ Art Sci (Nat Sci Ed), 10(3): 66–68 (In Chinese)
Lowe T. M., Eddy S. R. 1997. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucl Acids Res, 25: 955–964
Lawson R., Slowinski J. B., Crother B. I., Burbrink F. T. 2005. Phylogeny of the Colubroidea (Serpentes): New evidence from mitochondrial and nuclear genes. Mol Phylogenet Evol, 37(2): 581–601
Minton S. A. 1963. Feeding habits of the kukri snake, Oligodon taeniolatus. Herpetologica, 19: 147–147
Myers C. W. 2003. Rare snakes-five new species from eastern Panama: Reviews of northern Atractus and southern Geophis (Colubridae: Dipsadinae). Am Mus Nov, 1–47
Myers C. W., McDowell S. B. 2014. New taxa and cryptic species of neotropical snakes (Xenodontinae), with commentary on hemipenes as generic and specific characters. Bull Am Mus Nat Hist, 385(1): 1–112
Pesantes O. S. 1994. A method for preparing the hemipenis of preserved snakes. J Herpetol, 28(1): 93–95
Peters J. A. 1960. The snakes of the subfamily Dipsadinae. Ann Arbor: University of Michigan, 224pp
Pinou T., Vicario S., Marschner M., Caccone A. 2004. Relict snakes of North America and their relationships within Caenophidia, using likelihood-based Bayesian methods on mitochondrial sequences. Mol Phylogenet Evol, 32(2): 563–574
Passos P., Fernandes R., Zanella N. 2005. A new species of Atractus (Serpentes: Colubridae) from southern Brazil. Herpetologica, 61(2): 209–218
Price R. M. 1982. Dorsal Snake Scale Microdermato-glyphics: Ecological Indicator or Taxonomic Tool? J Herpetol, 16(3): 294–306
Prudente A. L., Passos P. 2010. New cryptic species of Atractus (Serpentes: Dipsadidae) from Brazilian Amazonia. Copeia, 2010(3): 397–404
Pyron R. A., Burbrink F. T. 2012. Extinction, ecological opportunity, and the origins of global snake diversity. Evolution, 66(1): 163–178
Pyron R. A., Burbrink F. T., Colli G. R., De Oca A. N. M., Vitt L. J., Kuczynski C. A., Wiens J. J. 2011. The phylogeny of advanced snakes (Colubroidea), with discovery of a new subfamily and comparison of support methods for likelihood trees. Mol Phylogenet Evol, 58(2): 329–342
Pyron R. A., Burbrink F. T., Wiens J. J. 2013. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol Biol, 13(1): 93
Ray J. M., Montgomery C. E., Mahon H. K., Savitzky A. H., Lips K. R. 2012. Goo-eaters: Diets of the Neotropical snakes Dipsas and Sibon in Central Panama. Copeia, 2012(2): 197–202
Rossman D. A., Myer P. A. 1990. Behavioral and morphological adaptations for snail extraction in the North American brown snakes (genus Storeria). J Herpetol, 434–438
Sazima I. 1989. Feeding behavior of the snail-eating snake, Dipsas indica. J Herpetol, 464–468
Sawaya R. J., Sazima I. 2003. A new species of Tantilla (Serpentes: Colubridae) from southeastern Brazil. Herpetologica, 59(1): 119–126
Slowinski J. B., Lawson R. 2002. Snake phylogeny: Evidence from nuclear and mitochondrial genes. Mol Phylogenet Evol, 24(2): 194–202
Sheehy C. M. 2012. Phylogenetic relationships and feeding behavior of neotropical snail-eating snakes (Dipsadinae, Dipsadini). Ph.D. Thesis. University of Texas at Arlington. 135pp
Stamatakis A. 2006. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22(21): 2688–2690
Stamatakis A., Hoover P., Rougemont J. 2008. A rapid bootstrap algorithm for the RAxML web servers. Syst Biol, 57(5): 758–771
Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol, 30(12): 2725–2729
Utiger U., Helfenberger N., Sch?tti B., Schmidt C., Ruf M., Ziswiler V. 2002. Molecular systematics and phylogeny of Old and New World ratsnakes, Elaphe Auct., and related genera (Reptilia, Squamata, Colubridae). Russ J Herpetol, 9(2): 105–124
Vidal N., Delmas A. S., David P., Cruaud C., Couloux A., Hedges S. B. 2007. The phylogeny and classification of caenophidian snakes inferred from seven nuclear protein-coding genes. C R Biol, 330(2): 182–187
Vidal N., Dewynter M., Gower D. J. 2010. Dissecting the major American snake radiation: A molecular phylogeny of the Dipsadidae Bonaparte (Serpentes, Caenophidia). C R Biol, 333(1): 48–55
Vidal N., Hedges S. B. 2002. Higher-level relationships of caenophidian snakes inferred from four nuclear and mitochondrial genes. C R Biol, 325(9): 987–995
Vidal N., Hedges S. B. 2009. The molecular evolutionary tree of lizards, snakes, and amphisbaenians. C R Biol, 332(2): 129–139
Vidal N., Kindl S. G., Wong A., Hedges S. B. 2000. Phylogenetic relationships of xenodontine snakes inferred from 12S and 16S ribosomal RNA sequences. Mol Phylogenet Evol, 14(3): 389–402
Vieites D. R., Min M. S., Wake D. B. 2007. Rapid diversification and dispersal during periods of global warming by plethodontid salamanders. Proc Natl Acad Sci, 104(50): 19903–19907
Wiens J. J., Hutter C. R., Mulcahy D. G., Noonan B. P., Townsend T. M., Sites J. W., Reeder T. W. 2012. Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species. Biol Lett, 8(6): 1043–1046
Yang L., Messenger K., Liao M. 2009. Reptiles and Amphibians Diversity of Shennongjia Natational Nature Reserve. Sichuan J Zool, 28(2): 286–291
Yuan H. 1983. A new species of the genus Oligodon from Shaanxi, China. Acta Herpetologica Sin, 2: 65–67 (In Chinese)
Zaher H. 1999. Hemipenial morphology of the South American xenodontine snakes: With a proposal for a monophyletic Xenodontinae and a reappraisal of colubroid hemipenes. Bull AMNH, 240: 1–168
Zaher H., Grazziotin F. G., Cadle J. E., Murphy R. W., Moura-Leite J. C. D., Bonatto S. L. 2009. Molecular phylogeny of advanced snakes (Serpentes, Caenophidia) with an emphasis on South American Xenodontines: A revised classification and descriptions of new taxa. Pap Avulsos Zool, 49(11): 115–153
Zaher H., Prudente A. L. C. 2003. Hemipenes of Siphlophis (Serpentes, Xenodontinae) and techniques of hemipenial preparation in snakes: a response to Dowling. Herpetol Rev, 34(4): 302–306
Zaher H., Souza I., Gower D. J., Hingst-Zaher E., Silva Jr. N. J. D. 2005. Redescription of Atractus albuquerquei (Serpentes: Colubridae: Dipsadinae), with comments on geographical distribution and intraspecific variation. Pap Avulsos Zool, 45(2): 19–32
Zhang F., Hu S., Zhao E. 1984: Comparative studies and phylogenetic discussions on hemipenial morphology of the Chinese Colubrinae (Colubridae). Acta Herpetologica Sin, N Ser 3(3): 23–44 (In Chinese)
Zhang B., Huang S. 2013. Relationship of Old World Pseudoxenodon and New World Dipsadinae, with Comments on Underestimation of Species Diversity of Chinese Pseudoxenodon. Asian Herpetol Res, 4(3): 155–165
Zhao E. M. 2006. Snakes of China. Hefei: Anhui Science and Technology Publishing House. (In Chinese)
Zhao E., Huang M., Zong Y., Zheng J., Huang Z., Yang D., Li D. 1998. Fauna Sinica: Reptilia, Vol. 3, Squamata Serpentes. Beijing: Science Press (In Chinese)

更新日期/Last Update: 2016-01-25