[1].[J].Asian Herpetological Research,2014,5(2):104-112.[doi:10.3724/SP.J.1245.2014.00104]
 Ying XIN,Huihui WANG,Xiaolong TANG,et al.Characterisation and Expression Analysis of Sox9 in the Multiocellated Racerunner, Eremias multiocellata[J].Asian Herpetological Research(AHR),2014,5(2):104-112.[doi:10.3724/SP.J.1245.2014.00104]
点击复制

()
分享到:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

卷:
5
期数:
2014年2期
页码:
104-112
栏目:
Original Article
出版日期:
2014-06-25

文章信息/Info

Title:
Characterisation and Expression Analysis of Sox9 in the Multiocellated Racerunner, Eremias multiocellata
文章编号:
AHR-2014-0001
Author(s):
Ying XIN Huihui WANG Xiaolong TANG Songsong LU Weixin LI Yang ZHANG Shiwei LIANG and Qiang CHEN*
Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou 730000, Gansu, China
Keywords:
Sox9 HMG-box RACE Eremias multiocellata tissue specificity
DOI:
10.3724/SP.J.1245.2014.00104
Abstract:
Sox9 is an important member of Sox family which is involved in a variety of developmental processes including sex determination and gonadal differentiation. The cDNA of Sox9 from multiocellated racerunner E. multiocellata was cloned using reverse transcription-polymerase chain reaction (RT-PCR) and rapid ampli?cation of cDNA ends (RACE). The sequence contains a 1497 bp open reading frame, which encodes a 498 amino acid protein with a predicted molecular weight of 55.45 kDa. EmSox9 displays high similarity to those of reptiles, and shows an overall amino acid identity of >82%. We also investigated the tissue-specific expression of EmSox9 mRNA by real-time quantitative PCR. Sox9 mRNA is present in brain, heart, liver, kidney, gonads and muscle tissues of adult E. multiocellata, with the highest expression in brain and testis. The results indicate that Sox9 may play important roles in some tissues during E. multiocellata neural and gonadal development.

参考文献/References:

Agrawal R., Wessely O., Anand A., Singh L., Aggarwal R. 2009. Male-specific expression of Sox9 during gonad development of crocodile and mouse is mediated by alternative splicing of its proline-glutamine-alanine rich domain. FEBS J, 276(15): 4184–4196
Barrionuevo F., Scherer G. 2010. SoxE genes: Sox9 and Sox8 in mammalian testis development. Int J Biochem Cell Biol, 42(3): 433–436
Bernard P., Tang P., Liu S., Dewing P., Harley V. R., Vilain E. 2003. Dimerization of Sox9 is required for chondrogenesis, but not for sex determination. Hum Mol Genet, 12(14): 1755–1765
Bishop C. E., Whitworth D. J., Qin Y., Agoulnik A. I., Agoulnik I. U., Harrison W. R., Behringer R. R., Overbeek P. A. 2000. A transgenic insertion upstream of Sox9 is associated with dominant XX sex reversal in the mouse. Nat Genet, 26(4): 490–494
Bowles J., Schepers G., Koopman P. 2000. Phylogeny of the Sox family of developmental transcription factors based on sequence and structural indicators. Dev Biol, 227(2): 239–255
Chaboissier M. C., Kobayashi A., Vidal V. I. P., Lützkendorf S., van de Kant H. J. G., Wegner M., de Rooij D. G., Behringer R. R., Schedl A. 2004. Functional analysis of Sox8 and Sox9 during sex determination in the mouse. Development, 131(9): 1891–1901
Crews D. 2003. Sex determination: where environment and genetics meet. Evol Dev, 5(1): 50–55
Ferguson M. W., Joanen T. 1982. Temperature of egg incubation determines sex in Alligator mississippiensis. Nature, 296: 850–853
Gubbay J., Collignon J., Koopman P., Capel B., Economou A., Münsterberg A., Vivian N., Goodfellow P., Lovell-Badge R. 1990. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature, 346(6281): 245–250
Harley V. R. 2002. The molecular action of testis-determining factors Sry and Sox9. Novartis Found Symp, 244: 57–66
Kawai A., Ishijima J., Nishida C., Kosaka A., Ota H., Kohno S.-i., Matsuda Y. 2009. The ZW sex chromosomes of Gekko hokouensis (Gekkonidae, Squamata) represent highly conserved homology with those of avian species. Chromosoma, 118(1): 43–51
Kent J., Wheatley S. C., Andrews J. E., Sinclair A. H., Koopman P. 1996. A male-specific role for Sox9 in vertebrate sex determination. Development, 122(9): 2813–2822
Koopman P. 2005. Sex determination: a tale of two Sox genes. Trends Genet, 21(7): 367–370
Lang J. W., Andrews H., Whitaker R. 1989. Sex determination and sex ratios in Crocodylus palustris. Am Zool, 29(3): 935–952
Li H., Qu Y.-F., Ding G.-H., Ji X. 2011. Life-history variation with respect to experienced thermal environments in the lizard, Eremias multiocellata (Lacertidae). Zoolog Sci, 28(5): 332–338
Merchant-Larios H., Ruiz-Ramirez S., Moreno-Mendoza N., Marmolejo-Valencia A. 1997. Correlation among thermosensitive period, estradiol response, and gonad differentiation in the sea turtle Lepidochelys olivacea. Gen Comp Endocrinol, 107(3): 373–385
Modi W. S., Crews D. 2005. Sex chromosomes and sex determination in reptiles: Commentary. Curr Opin Genet Dev, 15(6): 660–665
Morjan C. L. 2003. Variation in nesting patterns affecting nest temperatures in two populations of painted turtles (Chrysemys picta) with temperature-dependent sex determination. Behav Ecol Sociobiol, 53(4): 254–261
Raghuveer K., Senthilkumaran B. 2010. Isolation of Sox9 duplicates in catfish: Localization, differential expression pattern during gonadal development and recrudescence, and hCG-induced up-regulation of Sox9 in testicular slices. Reproduction, 140(3): 477
Schepers G., Teasdale R., Koopman P. 2002. Twenty pairs of Sox: Extent, homology, and nomenclature of the mouse and human Sox transcription factor gene families. Dev cell, 3(2): 167–170
Shoemaker C., Queen J., Crews D. 2007. Response of candidate sex-determining genes to changes in temperature reveals their involvement in the molecular network underlying temperature-dependent sex determination. Mol Endocrinol, 21(11): 2750–2763
Sock E., Pagon R. A., Keymolen K., Lissens W., Wegner M., Scherer G. 2003. Loss of DNA-dependent dimerization of the transcription factor Sox9 as a cause for campomelic dysplasia. Hum Mol Genet, 12(12): 1439–1447
Spotila J. R., Standora E. A., Morreale S. J., Ruiz G. J. 1987. Temperature dependent sex determination in the green turtle (Chelonia mydas): Effects on the sex ratio on a natural nesting beach. Herpetologica, 43(1): 74–81
Sudbeck P., Schmitz M., Baeuerle P., Scherer G. 1996. Sex reversal by loss of the C-terminal transactivation domain of human Sox9. Nat Genet, 13(2): 230–232
Takase M., Noguchi S., Nakamura M. 2000. Two Sox9 messenger RNA isoforms: Isolation of cDNAs and their expression during gonadal development in the frog Rana rugosa. FEBS Lett, 466(2): 249–254
Tamura K., Dudley J., Nei M., Kumar S. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 24(8): 1596
Tang X., Yue F., He J., Wang N., Ma M., Mo J., Chen Q. 2013. Ontogenetic and sexual differences of thermal biology and locomotor performance in a lacertid lizard, Eremias multiocellata. Zoology, 116(6): 331–335
Tang X. L., Yue F., Yan X. F., Zhang D. J., Xin Y., Wang C., Chen Q. 2012. Effects of gestation temperature on offspring sex and maternal reproduction in a viviparous lizard (Eremias multiocellata) living at high altitude. J Therm Biol, 37(6): 438–444
Torres Maldonado L., Landa Piedra A., Moreno Mendoza N., Marmolejo Valencia A., Meza Mart nez A., Merchant Larios H. 2002. Expression profiles of Dax1, Dmrt1, and Sox9 during temperature sex determination in gonads of the sea turtle Lepidochelys olivacea. Gen Comp Endocrinol, 129(1): 20–26
Valenzuela N. 2010. Multivariate expression analysis of the gene network underlying sexual development in turtle embryos with temperature-dependent and genotypic sex determination. Sex Dev, 4: 39–49
Valenzuela N., Lance V. 2004. Temperature-dependent sex determination in vertebrates, Smithsonian Books New York.
Valleley E., Cartwright E., Croft N., Markham A., Coletta P. 2001. Characterisation and expression of Sox9 in the Leopard gecko, Eublepharis macularius. J Exp Zool, 291(1): 85–91
Western P., Harry J., Graves J., Sinclair A. 1999. Temperature-dependent sex determination: Upregulation of Sox9 expression after commitment to male development. Dev Dyn, 214(3): 171–177
Wibbels T., Cowan J., LeBoeuf R. 1998. Temperature-dependent sex determination in the red-eared slider turtle, Trachemys scripta. J Exp Zool, 281(5): 409–416
Wilson M., Koopman P. 2002. Matching Sox: Partner proteins and co-factors of the Sox family of transcriptional regulators. Curr Opin Genet Dev, 12(4): 441–446
Xin Y., Tang X., Yue F., Zhang D., Yan X., Wang C., Chen Q. 2012. Isolation and sequence analysis of Sox genes from lizard Eremias multiocellata. Russ J Genet, 48(1): 79–85
Yue F., Tang X. L., Zhang D. J., Yan X. F., Xin Y., Chen Q. 2012. Body temperature and standard metabolic rate of the female viviparous lizard Eremias multiocellata during reproduction. Can J Zool, 90(1): 79–84
Zhang D. J., Tang X. L., Yue F., Chen Z., Li R. D., Chen Q. 2010. Effect of gestation temperature on sexual and morphological phenotypes of offspring in a viviparous lizard, Eremias multiocellata. J Therm Biol, 35(3): 129–133

更新日期/Last Update: 2016-01-25