[1].[J].Asian Herpetological Research,2013,4(4):263-267.[doi:10.3724/SP.J.1245.2013.000263]
 Shangling LOU,Yanhong LI,Long JIN,et al.Altitudinal Variation in Digestive Tract Length in Yunnan Pond Frog (Pelophylax pleuraden)[J].Asian Herpetological Research(AHR),2013,4(4):263-267.[doi:10.3724/SP.J.1245.2013.000263]


Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

Original Article


Altitudinal Variation in Digestive Tract Length in Yunnan Pond Frog (Pelophylax pleuraden)
Shangling LOU12 Yanhong LI12 Long JIN12 Zhiping MI12 Wenchao LIU12 and Wenbo LIAO
1 Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, Sichuan, China
2 Institute of Rare Animals and Plants, College of Life Sciences, China West Normal University, Nanchong, 637009, Sichuan , China
altitudinal gradient digestive tract Pelophylax pleuraden Ningnan county
The digestive tract plays an important role in digestion and the acquisition of food energy. Understanding the impact of abiotic environments on digestive tract morphology is especially important for evolution of digestive tract across different environments. Here, we investigated altitudinal variation in digestive tract length in the Yunnan Pond Frog (Pelophylax pleuraden) across five populations ranging from 1413 m to 1935 m a.s.l. in Ningnan County, Sichuan province in western China. Frogs were collected during the breeding season, from 1–5 June 2012. Our results revealed that females had longer digestive tract and relative digestive tract (i.e. digestive tract length / body size) lengths in comparison to males, on average, but the differences between them decreased with increasing altitude. Digestive tract and relative digestive tract lengths increased with increasing altitude suggesting that a higher proportion of indigestible materials may be consumed at high-altitude sites and result in a relative increase in digestive tract dimensions.


Crump R. L., Franklin C. E. 2003. Is re-feeding efficiency compromised by prolonged starvation during aestivation in the green striped burrowing frog, Cyclorana albogutata. J Exp Zool, 300(2): 126–132
Crump R. L., Franklin C. E. 2005. Arousal and re-feeding rapidly restores digestive tract morphology following aestivation in green-striped burrowing frogs. Comp Biochem Physiol, 142(4): 451–460
Derting T. L., Austin M. W. 1998. Changes in gut capacity with lactation and cold exposure in a species with low rates of energy use, the pine vole (Microtus pinetorum). Physiol Zool, 71: 611–623
Fei L., Ye C. Y. 2001. The Color Handbook of the Amphibians of Sichuan. Beijing, China: Chinese Forestry Publishing House
Fei L., Ye C. Y., Jiang J. P. 2005. An Illustrated Key to Chinese Amphibians. Chengdu, China: Sichuan Publishing Group, Sichuan Publishing House of Science and Technology
Gardarsson A. 1971. Food ecology and spacing behavior of rock ptarmigan (Lagopus mutus) in Iceland (PhD dissertation). Berkeley: University of California
Hammond K. A., Konarzewski M., Torres R., Diamond J. 1994. Metabolic ceilings under a combination of peak energy demands. Physiol Zoo, 68: 1479–1506
Hammond K. A., Roth J., Janes D. N., Dohm M. R. 1999. Morphological and physiological responses to altitude in deer mouse (Peromyscus maniculatus). Physiol Biochem Zool, 75: 613–622
Hammond K. A., Wunder B. A. 1991. The role of diet quality and energy need in the nutritional ecology of a small herbivore, Microtus ochrogaster. Physiol Zool, 64: 541–567
Juszczyk W. K., Obrzut Z., Zamachowski W. 1966. Morphological changes in the alimentary canal of the common frog (Rana temporaria L.) in the annual cycle. Cracow: Acta Biol Crac, Ser Zool, 4: 239–246
Koteja P. 1996. Limits to the energy budget in a rodent, Peromyscus maniculatus: Does gut capacity set the limit? Physiol Zool, 69: 994–1020
Leopold A. S. 1953. Intestinal morphology of gallinaceous birds in relation to food habits. J Wildl Manage, 17: 197–203
Lewin V. 1963. Reproduction and development of young in a population of California quail. Condor, 65(4): 249–278
Lou S. L., Jin L., Liu Y. H., Mi Z. P., Tao G., Tang Y. M., Liao W. B. 2012. Altitudinal variation in age and body size in Yunnan Pond Frog (Pelophylax pleuraden). Zool Sci, 29: 493–498
Luo Y. 2009. Study on the distribution, diet, growth and sexual dimorphism of Yunnan Frog (Pelophylax pleuraden). Dissertation, Guizhou Normal University
McWilliams S. R., Karasov W. H. 2001. Phenotypic flexibility in digestive system structure and function in migratory birds and its ecological significance. Comp Biochem Physiol, 128 (3): 579–593
Miller M. R. 1975. Gut morphology of mallards in relation to diet quality. J Wildl Manage, 39(1):168–173
Morrison C., Hero J. M. 2003. Geographic variation in lifehistory characteristics of amphibians: A review. J Anim Ecol, 72: 270–279
Moss R. 1972. Effects of captivity on gut lengths in red grouse. J Wildl Manage, 36(1): 99–104
Moss R. 1983. Gut size, body weight, and digestion of winter foods by grouse and ptarmigan. Condor, 85: 185–193
Naya D. E., Bozinovic F. 2004. Digestive phenotypic ?exibility in post-metamorphic amphibians: Studies on a model organism. Biol Res, 37: 365–370
Naya D. E., Bozinovic F. 2006. The role of ecological interactions on the physiological flexibility of lizards. Funct Ecol, 20: 601–608
Naya D. E., Bozinovic F., Karasov W. H. 2008. Latitudinal trends in digestive flexibility: Testing the climatic variability hypothesis with data on the intestinal length of rodents. Am Nat, 172: E122–E134
Naya D. E., Maneyro R., Camargo A., Rosa D. A., Canavero I. A. 2003. Annual changes in gut length of South American common frog (Leptodactylus ocellatus). Biociencias, 11: 47–52
Naya D. E., Veloso C., Bozinovic F. 2009. Gut size variation among Bufo spinulosus populations along an altitudinal (and dietary) gradient. Ann Zool Fenn, 46: 16–20
Naya D. E., Veloso C., Sabat P., Bozinovic F. 2010. Seasonal flexibility in organ size in the Andean lizard Liolaemus moradoensis. J Morphol, 271(12): 1440–1445
Pendergast B. A., Boag D. A. 1973. Seasonal changes in the internal anatomy of spruce grouse in Alberta. Auk, 90(2): 307–317
Piersma T., Lindstrom A. 1997. Rapid reversible changes in organ size as a component of adaptative behaviour. Trends Ecol Evol, 12: 134–138
Pulliainen E. 1976. Small intestine and caeca lengths in Willow Grouse (Lagopus lagopus) in Finnish Lapland. Ann Zool Fenn, 13: 195–199
Sabat P., Riveros J. M., Lo?pez-Pinto C. 2005. Phenotypic ?exibility in the intestinal enzimes of the African clawed frog Xenopus laevis. Comp Biochem Physiol, 140(1): 135–139
Sassi P. L., Borghi C. E., Bozinovic F. 2007. Spatial and seasonal plasticity in digestive morphology of cavies (Microcavia australis) inhabiting habitats with different plant qualities. J Mammol, 88: 165–172
Secor S. M. 2001. Regulation of digestive performance: a proposed adaptive response. Comp Biochem Physiol, 128(3): 565–577
Secor S. M. 2005. Physiological responses to feeding, fasting, and estivation for anurans. J Exp Biol, 208: 2595–2608
Simmons J. E. 1987. Herpetological collecting and collections management. Herpet Circular, 16: 1–70
Wang D. H., Pei Y. X., Yang J. C., Wang Z. W. 2003. Digestive tract morphology and food habits in six species of rodents. Folia Zool, 52(1): 51–55
Zhou W., Li M. H., Mai Z., Li W. 2006. Comparison of habitat utilization between sympatric population of Rana pleuraden and Rana chaochiaoensis in the kunming area. Zool Res, 27(4): 389–395
Zhou W., Pan X. F., Ou X. H., Li W. 2007. The feeding strategy of Rana pleuraden from kunming, China. Zool Res, 28(4): 395–402

更新日期/Last Update: 2016-01-25