[1].[J].Asian Herpetological Research,2013,4(3):155-165.[doi:10.3724/SP.J.1245.2013.000155]
 Baolin ZHANG and Song HUANG*.Relationship of Old World Pseudoxenodon and New World Dipsadinae, with Comments on Underestimation of Species Diversity of Chinese Pseudoxenodon[J].Asian Herpetological Research(AHR),2013,4(3):155-165.[doi:10.3724/SP.J.1245.2013.000155]


Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

Original Article


Relationship of Old World Pseudoxenodon and New World Dipsadinae, with Comments on Underestimation of Species Diversity of Chinese Pseudoxenodon
Baolin ZHANG123 and Song HUANG134*
1 College of Life and Environment Sciences, Huangshan University, Huangshan 245021, Anhui, China
2 School of Life Sciences, Yunnan University, Kunming 650091, Yunnan, China
3 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
4 Institute of Biodiversity and Geobiology, Department of Life Sciences, Tibet University, Lhasa 850000, Tibet, China
phylogenetic position 12S rRNA 16S rRNA Beringian Land Bridge cryptic species
Assessment of the relationship between Pseudoxenodon and Dipsadinae has been hampered by lack of adequate samples. In this paper, we conducted phylogenetic analyses using two mitochondrial genes (12S and 16S rRNA) and one nuclear gene (c-mos) from thirteen specimens representing two species of Pseudoxenodon, together with 84 sequences of caenophidians and an outgroup sequence of Boa constrictor. Our study suggests that the Southeast Asian genus, Pseudoxenodon forms a robust genetic subclade within South American xenodontines, indicating that at least one lineage within this genus entered or returned to the Old World (OW) from the New World (NW) across the Beringian Land Bridge during the early Tertiary and the warm mid-Miocene. It also reveals the high intraspecific genomic variation within the populations of Pseudoxenodon macrops, indicating that species diversity of Pseudoxenodon in China is likely underestimated.


Alfaro M. E., Arnold S. J. 2001. Molecular systematics and evolution of Regina and the thamnophiine snakes. Mol Phylogenet Evol, 21: 408–423
Alfaro M. E., Karns D. R., Voris H. K., Brock C. D., Stuart B. L. 2008. Phylogeny, evolutionary history, and biogeography of Oriental-Australian rear-fanged water snakes (Colubroidea: Homalopsidae) inferred from mitochondrial and nuclear DNA sequences. Mol Phylogenet Evol, 46: 576–593
Anderson J. S. 2001. The phylogenetic trunk: Maximal inclusion of taxa with missing data in an analysis of the lepospondyli (Vertebrata, Tetrapoda). Syst Biol, 50: 170–193
Bininda-Emonds O. R. P., Bryant H. N., Russell A. P. 1998. Supraspecific taxa as terminals in cladistic analysis: Implicit assumptions of monophyly and a comparison of methods. Biol J Linn Soc, 64: 101–133
Blyth E. 1855. Notices and descriptions of various reptiles, new or little known, Part 2. J Asiat Soc Bengal, 23: 287–302
Boulenger G. A. 1890. The Fauna of British India, Including Ceylon and Burma. Reptilia and Batrachia. London: Taylor and Francis
Burbrink F. T., Fontanella F., Pyron R. A. 2008. Phylogeography across a continent: The evolutionary and demographic history of the North American racer (Serpentes: Colubridae: Coluber constrictor). Mol Phylogenet Evol, 47: 274–288
Burbrink F. T., Lawson R. 2007. How and when did Old World ratsnakes disperse into the New World? Mol Phylogenet Evol, 43: 173–189
Cadle J. E. 1984. Molecular systematics of neotropical xenodontine snakes: III. Overview of xenodontine phylogeny and the history of New World snakes. Copeia, 1984: 641–652
Carranza S., Arnold E. N., Wade E., Fahd S. 2004. Phylogeography of the false smooth snakes, Macroprotodon (Serpentes, Colubridae): Mitochondrial DNA sequences show European populations arrived recently from Northwest Africa. Mol Phylogenet Evol, 33: 523–532
Castoe T. A., Parkinson C. L. 2006. Bayesian mixed models and the phylogeny of pitvipers (Viperidae: Serpentes). Mol Phylogenet Evol, 39: 91–110
Creer S., Malhotra A., Thorpe R. S., Chou W. H. 2001. Multiple causation of phylogeographical pattern as revealed by nested clade analysis of the bamboo viper (Trimeresurus stejnegeri) within Taiwan. Mol Ecol, 10: 1967–1981
Fu J. Z., Weadick C. J., Zeng X. M., Wang Y. Z., Liu Z. J., Zheng Y. C., Li C., Hu Y. 2005. Phylogeographic analysis of the Bufo gargarizans species complex: A revisit. Mol Phylogenet Evol, 37: 202–213
Giannasi N., Malhotra A., Thorpe R. S. 2001. Nuclear and mtDNA Phylogenies of the Trimeresurus Complex: Implications for the Gene versus Species Tree Debate. Mol Phylogenet Evol, 19: 57–66
He M., Feng J. C., Liu S. Y., Guo P., Zhao E. M. 2009. The phylogenetic position of Thermophis (Serpentes: Colubridae), an endemic snake from the Qinghai-Xizang Plateau, Chin J Nat Hist, 43: 479–488
Hedges S. B., Couloux A., Vidal N. 2009. Molecular phylogeny, classification, and biogeography of West Indian racer snakes of the Tribe Alsophiini (Squamata, Dipsadidae, Xenodontinae). Zootaxa, 2067: 1–28
Heise P. J., Maxson L. R., Dowling H. G., Hedges S. B. 1995. Higher-level snake phylogeny inferred from mitochondrial DNA sequences of 12S rRNA and 16S rRNA genes. Mol Biol Evol, 12: 259–265
Huang S., He S. P., Peng Z. G., Zhao K., Zhao E. M. 2007. Molecular phylogeography of endangered sharp-snouted pitviper (Deinagkistrodon acutus; Reptilia, Viperidae) in Mainland China. Mol Phylogenet Evol, 44: 942–952
Huang S., Liu S. Y., Guo P., Zhang Y. P., Zhao E. M. 2009. What are the closest relatives of the hot-spring snakes (Colubridae, Thermophis), the relict species endemic to the Tibetan Plateau? Mol Phylogenet Evol, 51: 438–446
Huelsenbeck J. P., Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17: 754–755
Kelly C. M. R., Barker N. P., Villet M. H., Broadley D. G. 2009. Phylogeny, biogeography and classification of the snake superfamily Elapoidea: A rapid radiation in the late Eocene. Cladistics, 25: 38–63
Kelly C. M. R, Barker N. P., Villet M. H. 2003. Phylogenetics of advanced snakes (Caenophidia) based on four mitochondrial genes. Syst Biol, 52: 439–459
Knight A., Mindell D. P. 1994. On the phylogenetic relationship of Colubrinae, Elapidae, and Viperidae and the evolution of front-fanged venom systems in snakes. Copeia, 1994: 1–9
Lawson R., Slowinski J. B., Crother B. I., Burbrink F. T. 2005. Phylogeny of the Colubroidea (Serpentes): New evidence from mitochondrial and nuclear genes. Mol Phylogenet Evol, 37: 581–601
Lemmon A. R., Brown J. M., Stanger-Hall K., Lemmon E. M. 2009. The effect of ambiguous data on phylogenetic estimates obtained by maximum likelihood and Bayesian inference. Syst Biol, 58: 130–145
Ling C., Liu S. Y., Huang S., Burbrink F. T., Guo P., Sun Z. Y., Zhao J. 2010. Phylogenetic analyses reveal a unique species of Elaphe (Serpentes, Colubridae) new to science. Asian Herpetol Res, 1(2): 90–96
Malhotra A., Thorpe R. S. 2004. A phylogeny of four mitochondrial gene regions suggests a revised taxonomy for Asian pitvipers (Trimeresurus and Ovophis). Mol Phylogenet Evol, 32: 83–100
McDowell S. B. 1987. Systematics. In Seigel R. A., Collins J. T., Novak S. S. (Eds.), Snakes: Ecology and Evolutionary Biology. New York: Macmillan Publishing Company
Mulcahy D. G., Macey J. R. 2009. Vicariance and dispersal form a ring distribution in nightsnakes around the Gulf of California. Mol Phylogenet Evol, 53: 537–546
Nagy Z. T., Joger U., Wink M., Glaw F., Vences M. 2003. Multiple colonization of Madagascar and Socotra by colubrid snakes: Evidence from nuclear and mitochondrial gene phylogenies. Proc Biol Sci, 270: 2613–2621
Nagy Z. T., Lawson R., Joger U., Wink M. 2004. Molecular systematics of racers, whipsnakes and relatives (Reptilia: Colubridae) using mitochondrial and nuclear markers. J Zool Syst Evol Res, 42: 223–233
Palumbi S. R., Martin A., Romano S., Mcmillan S., Stice W. O., Grabowski L. G. 1991. The Simple Fool’s Guide to PCR. Honolulu: University of Hawaii Press
Parkinson C. L. 1999. Molecular systematics and biogeographical history of pitvipers as determined by mitochondrial ribosomal DNA sequences. Copeia, 1999: 576–586
Peng Z. G., Ho S. Y. W., Zhang Y. G., He S. P. 2006. Uplift of the Tibetan Plateau: Evidence from divergence times of glyptosternoid catfishes. Mol Phylogenet Evol, 39: 568–572
Philippe H., Snell E. A., Bapteste E., Lopez P., Holland P. W. H., Casane D. 2004. Phylogenomics of eukaryotes: Impact of missing data on large alignments. Mol Biol Evol, 21: 1740–1752
Pinou T., Vicario S., Marschner M., Caccone A. 2004. Relict snakes of North America and their relationships within Caenophidia, using likelihood-based Bayesian methods on mitochondrial sequences. Mol Phylogenet Evol, 32: 563–574
Posada D., Crandall K. A. 1998. Modeltest: Testing the model of DNA substitution. Bioinformatics, 14: 817–818
Pyron R. A., Burbrink F. T., Colli G. R., de Oca A. N., Vitt L. J., Kuczynski C. A., Wiens J. J. 2011. The phylogeny of advanced snakes (Colubroidea), with discovery of a new subfamily and comparison of support methods for likelihood trees. Mol Phylogenet Evol, 58: 329–342
Ride W. D. L., Cogger H. G., Dupuis C., Kraus O., Minelli A., Thompson F. C., Tubbs P. K. 1999. International Code of Zoological Nomenclature. London: International Trust for Zoological Nomenclature
Sambrook J., Frisch E. F., Maniatis T. E. 1989. Molecular Cloning, A Laboratory Manual, 2nd edition. Cold Spring Harbour: Cold Spring Harbour Laboratory Press
Sanders K. L., Lee M. S., Leys R., Foster R., Keogh J. S. 2008. Molecular phylogeny and divergence dates for Australasian elapids and sea snakes (Hydrophiinae): Evidence from seven genes for rapid evolutionary radiations. J Evol Biol, 21: 682–695
Santos X., Roca J., Pleguezuelos J. M., Donaire D., Carranza S. 2008. Biogeography and evolution of the Smooth snake Coronella austriaca (Serpentes: Colubridae) in the Iberian Peninsula: Evidence for Messinian refuges and Pleistocenic range expansions. Amphibia-Reptilia, 29: 35–47
Schaetti B., Utiger U. 2001. A new genus for Zamenis socotrae Guenther, 1881 and a contribution to the phylogeny of Old World racers, whip snakes and related genera (Reptilia: Squamata: Colubrinae). Rev Suisse Zool, 108: 919–948
Simpson G. G. 1943. Mammals and the nature of continents. Am J Sci, 241: 1–31
Tamura K., Dudley J., Nei M., Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol, 24: 1596–1599
Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res, 25: 4876–4882
Thomson R. C., Wang I. J., Johnson J. R. 2010. Genome-enabled development of DNA markers for ecology, evolution and conservation. Mol Ecol, 19: 2184–2195
Uetz P. 2013. The Reptile Database [Internet]. Zoological Museum, Hamburg, Germany. Electronic database accessible at http://www.reptile-database.org
Utiger U., Helfenberger N., Sch?tti B., Schmidt C., Ruf M., Zisweiler Z. 2002. Molecular systematics and phylogeny of Old World and New World ratsnakes, Elaphe Auct., and related genera (Reptilia, Squamata, Colubridae). Russ J Herpetol, 9: 105–124
Utiger U., Schaetti B. 2004. Morphology and phylogenetic relationships of the Cyprus racer, Hierophis cypriensis, and the systematic status of Coluber gemonensis gyarosensis Mertens (Squamata, Colubrinae). Rev Suisse Zool, 111: 225–238
Vidal N., Branch W. R., Pauwels O. S. G., Hedges S. B., Broadley D. G., Wink M., Cruaud C., Joger U., Nagy Z. T. 2008. Dissecting the major African snake radiation: A molecular phylogeny of the Lamprophiidae Fitzinger (Serpentes, Caenophidia). Zootaxa, 1945: 51–66
Vidal N., Delmas A., David P., Cruaudd C., Coulouxd A., Hedgesa S. B. 2007. The phylogeny and classification of caenophidian snakes inferred from seven nuclear protein-coding genes. C R Biologies, 330: 182–187
Vidal N., Dewynter M., Gower D. J. 2010. Dissecting the major American snake radiation: A molecular phylogeny of the Dipsadidae Bonaparte (Serpentes, Caenophidia). C R Biologies, 333: 48–55
Vidal N., Hedges S. B. 2002. Higher-level relationships of snakes inferred from four nuclear and mitochondrial genes. C R Biologies, 325: 977–985
Vidal N., Kindl S. G., Wong A., Hedges S. B. 2000. Phylogenetic relationships of xenodontine snakes inferred from 12s and 16s ribosomal RNA sequences. Mol Phylogenet Evol, 14: 389–402
Wilcox T. P., Zwickl D. J., Heath T. A., Hillis D. M. 2002. Phylogenetic relationships of the dwarf boas and a comparison of Bayesian and bootstrap measures of phylogenetic support. Mol Phylogenet Evol, 25: 361–371
Zaher H. 1999. Hemipenial morphology of the South American xenodontine snakes, with a proposal for a monophyletic Xenodontinae and a reappraisal of colubroid hemipenes. New York: Bull Am Mus Nat Hist
Zaher H., Grazziotin F. G., Cadle J. E., Murphy R. W., Moura-Leite J. C., Bonatto S. L. 2009. Molecular phylogeny of advanced snakes (Serpentes, Caenophidia) with an emphasis on South America xenodontines: A revised classification and descriptions of new taxa. Pap Av Zool, 49: 115–153
Zhao E. M. 2006. Snakes in China, Vol. 1. Hefei: Anhui Science and Technology Publishing House (In Chinese)
Zwickl D. J. 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. thesis, the University of Texas at Austin

更新日期/Last Update: 2016-01-25