[1].Morphological Correlates of the Phonatory Organ in an Ultrasonically Phonating Frog[J].Asian Herpetological Research,2012,3(3):240-251.[doi:10.3724/SP.J.1245.2012.00240]
 Rongchuan XIONG,,et al.Morphological Correlates of the Phonatory Organ in an Ultrasonically Phonating Frog[J].Asian Herpetological Research(AHR),2012,3(3):240-251.[doi:10.3724/SP.J.1245.2012.00240]

Morphological Correlates of the Phonatory Organ in an Ultrasonically Phonating Frog()

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

Original Article


Morphological Correlates of the Phonatory Organ in an Ultrasonically Phonating Frog
Rongchuan XIONG1 2 3 4 Bin WANG1 Yuhan WU1 2 and Jianping JIANG1*
1 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China
3 College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China
4 Department of Life Science, Liupanshui Normal College, Liupanshui 553004, Guizhou, China
concave-eared torrent frog comparative anatomy ultrasonic phonation fundamental frequency
The concave-eared torrent frog (Odorrana tormota) is the first species of tailless amphibian that was evidenced to phonate and detect ultrasounds. We employed anatomic and histological methods to examine the phonatory organs, including the floor of the buccal cavity, vocal cords and glottis, of O. tormota and its sympatric species including O. graminea, O. schmackeri, and Amolops wuyiensis with different fundamental frequencies, and Pelophylax nigromaculatus as a control. Our results reveal that O. tormota possesses specialized phonatory organ structures, with thinner vocal cords modulated by a moderately stronger muscular mastoideus between the medial vocal cords and the lateral cricoid cartilages, and more elastic mouth floor to likely supply faster air stream which could make the vocal cords vibrate at higher frequencies, larger relative distance between the two muscles m. intermandibulares (RDMI), and higher nucleus density of m. intermandibularis (NDMI) and m. geniohyoideus (NDMG). The results of Pearson’s correlation tests between the mean values of the above measurements and the fundamental frequencies from the five species imply that all the specialized phonatory organ structures mentioned above might be favored by higher frequency of phonation of O. tormota.


Arch V. S., Grafe T. U., Gridi-Papp M., Narins P. M. 2009. Pure ultrasonic communication in an endemic bornean frog. PLoS ONE 4(4): e5413. doi:10.1371/journal.pone.0005413
Arch V. S., Narins P. M. 2008. ‘Silent’ signals: Selective forces acting on ultrasonic communication systems in terrestrial vertebrates. Anim Behav, 76: 1423–1428
Boersma P., Weenick D. 2008. PRAAT: Doing phonetics by computer (version 5.2). Retrieved from http://www.praat.org
Chen B., Wang Y. Z. 2002. Introduction to a method for making transparent specimen with rainbow skeletons. Bull Biol, 37: 56
Duellman W. E, Trueb L. 1994. Biology of amphibians. Baltimore and London: Johns Hopkins University Press, 670 pp
Fant G. 1960. Acoustic Theory of Speech Production. Mouton De Gruyter: The Hague
Feng A. S., Narins P. M., Xu C. H., Lin W. Y., Yu Z. L., Qiu Q., Xu Z. M., Shen J. X. 2006. Ultrasonic communication in frogs. Nature, 440: 333–336
Feng A. S., Riede T., Arch V. S., Yu Z., Xu Z. M., Yu X. J., Shen J. X. 2009. Diversity of the vocal signals of concave eared torrent frogs (Odorrana tormota): Evidence for individual signatures. Ethology, 115: 1015–1028
Gridi-Papp M., Feng A. S., Shen J. X., Yu Z. L., Rosowski J. J., Narins P. M. 2008. Active control of ultrasonic hearing in frogs. Proc Natl Acad Sci, 105: 11014–11019
Katti M. 2004. Tits, noise and urban bioacoustics. Trend Ecol Evol, 19: 109–110
Kuramoto M. 1977. Mating call structures of the Japanese pond frogs, Rana nigromaculata and Rana brevipoda (Amphibia, Anura, Ranidae). J Herpetol, 11: 249–254
Marler P., Peters S. 1977. Selective vocal learning in a sparrow. Science, 198: 519–521
Miller A. S., Harley J. P. 2002. Zoology, (5th Ed.) New York: McGraw Hill Higher Education
Ryan M. J. 1985. The túngara frog: A study in sexual selection and communication. Chicago, USA: University of Chicago Press, 246 pp
Schmid E. 1976. Contribution to the morphology and histology of the vocal cords of central european anurans (Amphibia). Zool Jahrbucher Anat. Bd, S: 133–150
Shen J. X. 2006. Novel progress on acoustic communication in the concave-eared torrent frog and its revelation. Bull Natl Nat Sci Foundation Chin, 20: 321–322
Shen J. X., Feng A. S., Xu Z. M., Yu Z. L., Arch V. S., Yu X. J., Narins P. M. 2008. Ultrasonic frogs show hyperacute phonotaxis to female courtship calls. Nature, 453: 914–946
Shen J. X., Xu Z. M., Feng A. S., Narins P. M. 2011. Large odorous frogs (Odorrana graminea) produce ultrasonic calls. J Comp Physiol A, 197: 1027–1030
Suthers R. A., Narins P. M., Lin W. Y., Schnitzler H. U., Denzinger A., Xu C. H., Feng A. S. 2006. Voices of the dead: Complex nonlinear vocal signals from the larynx of an ultrasonic frog. J Exp Biol, 209: 4984–4993
Walkowiak W. 2006. Call production and neural basis of phonation. In Narins P. M., Feng A. S., Fay R. R., Popper A. N. (Eds.), Hearing and sound communication in amphibians. New York: Springer, 87–112
Wang X. D., Tang L. M. 2007. Specimen technology for microscope. Beijing: Science Press
Wells K., Schwartz J. 2006. The behavioral ecology of anuran communication. In Narins P. M., Feng A. S., Fay R. R., Popper A. N. (Eds.), Hearing and sound communication in amphibians. New York: Springer, 44–86
Wu G. F. 1977. A new species of frogs from Huangshan, Anhui - Rana tormotus Wu. Acta Zool Sin, 23: 113–115
Xiong R. C., Wang B., Xie F., Jiang J. P. 2010. Comparative anatomy of mouth floor of Odorrana tormota and its sympatric three frogs. In Ji X. (Ed.), Herpetologica Sinica, 12. Nanjing: Press of Southeast Univ, 141–145

更新日期/Last Update: 2016-03-15