Shengnan YANG,Chunlan ZHANG,Wenbo LIAO,et al.Trophic Niche Shifts in Mountain Feirana Frogs under Human-mediated Habitat Transformations[J].Asian Herpetological Research(AHR),2021,12(2):1-9.[doi:10.16373/j.cnki.ahr.200114]
Click Copy

Trophic Niche Shifts in Mountain Feirana Frogs under Human-mediated Habitat Transformations
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

2021 VoI.12 No.02
Research Field:
Publishing date:


Trophic Niche Shifts in Mountain Feirana Frogs under Human-mediated Habitat Transformations
Shengnan YANG1 Chunlan ZHANG2* Wenbo LIAO3 Na LI14 and Junhua HU1
1 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
2 Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
3 Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
4 CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
amphibians habitat transformation habitat type stable isotopes trophic niche width urbanization
Urbanization can induce environmental changes, disturbing habitat transformation process, and resulting in niche shift of species and local extinctions. Amphibians have experienced worldwide population declines, with habitat loss acting as one of the most disruptive causes. How amphibian species response to changing habitats could be reflected in their utilization and assimilation of resources. Using stable isotopes, we explored trophic niche variation between natural and transformed habitats for three closely related frog species in the genus Feirana (F. quadranus, F. taihangnica and F. kangxianensis). Our results indicated that the δ13C value was negatively correlated with body size (snout-vent length) and the δ15N value increased along with the ontogenetic process. The δ13C values were significantly different among habitat types, and the variation of δ15N values was relatively limited in different disturbed gradients. Urban groups displayed broader trophic niche width than both rural and natural groups. When species in sympatry, their resource utilization and trophic niche overlap probability were more similar in rural habitats than their natural counterparts. Our findings would be conducive to understand trophic niche and function variation in amphibians during the urbanization process, allowing for effective predictions of ecological consequences of habitat transformation. This study can also provide insight into conservation strategies for mountain amphibians in the Anthropocene.


Battles A. C., Moniz M., Kolbe J. J. 2018. Living in the big city: preference for broad substrates results in niche expansion for urban Anolis lizards. Urban Ecosyst, 21: 1087–1095
Cloyed C. S., Eason P. K. 2017. Niche partitioning and the role of intraspecific niche variation in structuring a guild of generalist anurans. R Soc Open Sci, 4: 170060
Dezerald O., Srivastava D. S., Cereghino R., Carrias, J. F., Corbara B., Farjalla V. F., Leroy C., Marino, N. A. C., Piccoli G. C. O., Richardson B. A., Richardson M. J., Romero G. Q., Gonzalez A. L. 2018. Functional traits and environmental conditions predict community isotopic niches and energy pathways across spatial scales. Funct Ecol, 32: 2423–2434
Fei L., Hu S., Ye C., Huang Y. 2009. Fauna Sinica. Amphibia. Vol. 3. Anura Ranidae. Beijing, China: Science Press (In Chinese)
Ficetola G. F., Marziali L., Rossaro B., Bernardi F. D., Padoa-Schioppa E. 2011. Landscape-stream interactions and habitat conservation for amphibians. Ecol Appl, 21: 1272–1282
Marzluff J. M., Bowman R., Donnelly R. 2001. A historical perspective on urban bird research: trends, terms, and approaches. In: Marzluff J.M., Bowman R., Donnelly R. (eds.) Avian Ecology and Conservation in an Urbanizing World. Springer, Boston, USA. p 1–17
Hof C., Miguel B. A., Walter J., Carsten R. 2011. Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature, 480: 516–519
Hu J., Jiang J. 2018. Inferring ecological explanations for biogeographic boundaries of parapatric Asian mountain frogs. BMC Ecol, 18: 3
Huang Y., Wang X., Yang X., Jiang J., Hu J. 2020. Unveiling the roles of interspecific competition and local adaptation in phenotypic differentiation of parapatric frogs. Curr Zool, 66: 383–392
Huckembeck S., Winemiller K. O., Loebmann D., Garcia A. M. 2018. Trophic ecology of two sympatric frogs with contrasting morphology and habitat use in a subtropical wetland. Herpetologica, 74: 207–216
Ishikawa N. F., Hyodo F., Tayasu I. 2013. Use of carbon-13 and carbon-14 natural abundances for stream food web studies. Ecol Res, 28: 759–769
Jackson A. L., Inger R., Parnell A. C., Bearhop S. 2011. Comparing isotopic niche widths among and within communities: SIBER - Stable Isotope Bayesian Ellipses in R. J Anim Ecol, 80: 595–602
Liang D., Yang S., Pagani-Núñez E., He C., Liu Y., Goodale E., Liao W., Hu J. 2020. How to become a generalist species? Individual niche variation across habitat transformation gradients. Front Ecol Evol, 8: 597450
Loucks C. J., Zhi L., Dinerstein E., Dajun W., Dali F., Hao W. 2003. The giant pandas of the Qinling Mountains, China: a case study in designing conservation landscapes for elevational migrants. Conserv Biol, 17: 558–565
Lowry H., Lill A., Wong B. B. 2013. Behavioural responses of wildlife to urban environments. Biol Rev, 88: 537–549
Martin P. R., Bonier F. 2018. Species interactions limit the occurrence of urban-adapted birds in cities. Proc Natl Acad Sci U S A, 115: E11495–E11504
Matsubayashi J., Saitoh Y., Osada Y., Uehara Y., Habu J., Sasaki T., Tayasu I., Kurle C. 2017. Incremental analysis of vertebral centra can reconstruct the stable isotope chronology of teleost fishes. Methods Ecol Evol, 8: 1755–1763
Murray M., Cembrowski A., Latham A. D. M., Lukasik V. M., Pruss S., St Clair C. C. 2015. Greater consumption of protein-poor anthropogenic food by urban relative to rural coyotes increases diet breadth and potential for human-wildlife conflict. Ecography, 38: 1235–1242
Myers N., Mittermeier R. A., Mittermeier C. G., Fonseca G. A. B., Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature, 403: 853–858
Newsome S. D., Carlos M. D. R., Bearhop S., Phillips D. L. 2007. A niche for isotopic ecology. Front Ecol Environ, 5: 429–436
Pagani-Núñez E., Liang D., He C., Zhou X., Luo X., Liu Y., Goodale E. 2019. Niches in the Anthropocene: passerine assemblages show niche expansion from natural to urban habitats. Ecography, 42: 1360–1369
Pimm S. L., Jenkins C. N., Abell R., Brooks T. M., Gittleman J. L., Joppa L. N., Raven P. H., Roberts C. M., Sexton J. O. 2014. The biodiversity of species and their rates of extinction, distribution, and protection. Science, 344: 1246752
Sagouis A., Cucherousset J., Villeger S., Santoul F., Bouletreau S. 2015. Non-native species modify the isotopic structure of freshwater fish communities across the globe. Ecography, 38: 979–985
Schmidt S. N., Harvey C. J., Vander Zanden M. J. 2011. Historical and contemporary trophic niche partitioning among Laurentian Great Lakes coregonines. Ecol Appl, 21: 888–896
Seto K. C., Gueneralp B., Hutyra L. R. 2012. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc Natl Acad Sci U S A, 109: 16083–16088
Stuart S. N., Chanson J. S., Cox N. A., Young B. E., Rodrigues A. S., Fischman D. L., Waller R. W. 2004. Status and trends of amphibian declines and extinctions worldwide. Science, 306: 1783–1786
Vander Z. M. J., Clayton M. K., Moody E. K., Solomon C. T., Weidel B. C. 2015. Stable isotope turnover and half-life in animal tissues: a literature synthesis. PLoS One, 10: e0116182
Wake D. B., Vredenburg V. T. 2008. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc Natl Acad Sci U S A, 105: 11466–11473
Wang B., Jiang J., Xie F., Chen X., Dubois A., Liang G., Wagner S. 2009. Molecular phylogeny and genetic identification of populations of two species of Feirana frogs (Amphibia: Anura, Ranidae, Dicroglossinae, Paini) endemic to China. Zool Sci, 26: 500–509
Wells K. D. 2007. The Ecology and Behavior of Amphibians. Chicago, USA: The University of Chicago Press
Yang S., Jiang J., Luo Z., Yang X., Wang X., Liao W., Hu J. 2019. Microhabitat segregation of parapatric frogs in the Qinling Mountains. Asian Herpetol Res, 1: 48–55
Yang X., Wang B., Hu J., Jiang J. 2011. A new species of the genus Feirana (Amphibia: Anura: Dicroglossidae) from the western Qinling Mountains of China. Asian Herpetol Res, 2: 72–86
Zhang M. 2000. Biodiversity in the Qinling Mountains Nature Reserves and its conservation and development. Rural Eco- Environ, 16: 15–19 (In Chinese)
Zhang Y., Wang Y., Phillips N., Ma K., Li J., Wang W. 2017. Integrated maps of biodiversity in the Qinling Mountains of China for expanding protected areas. Biol Conserv, 210: 64–71


Last Update: 2021-03-31