Dan WANG,Jinlong REN,Ke JIANG,et al.Morphology and Histochemistry of Infralabial Glands of Two Species in the Slug-Eating Family Pareidae (Reptilia: Serpentes)[J].Asian Herpetological Research(AHR),2022,13(3):180-189.[doi:10.16373/j.cnki.ahr.210071]
Click Copy

Morphology and Histochemistry of Infralabial Glands of Two Species in the Slug-Eating Family Pareidae (Reptilia: Serpentes)
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

2022 VoI.13 No.3
Research Field:
Publishing date:


Morphology and Histochemistry of Infralabial Glands of Two Species in the Slug-Eating Family Pareidae (Reptilia: Serpentes)
Dan WANG12 Jinlong REN12 Ke JIANG1 Wei WU12 Changjun PENG12 Hussam ZAHER3 Dechun JIANG1* and Jiatang LI124*
1 CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Museu de Zoologia, Universidade de S?o Paulo, S?o Paulo 04263-000, SP, Brazil
4 Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin Nay Pyi Taw 05282, Myanmar
convergent evolution histology Pareas berdmorei Pareas chinensis specialized diet
Pareidae and Dipsadidae, two independently evolved taxa in the Serpentes lineage, both feed exclusively on terrestrial mollusks (snails and slugs). Dipsadid snakes developed hypertrophic infralabial glands in their lower jaw, which are thought to be associated with their specialized feeding behaviors. However, whether a similar gland exists in pareid snakes is unknown. In this study, we examined the morphological characteristics of the infralabial glands in Pareas berdmorei and Pareas chinensis based on comparative anatomical, histochemical, and histopathological analysis. Our results demonstrated that both Pareas species had similar hypertrophied infralabial glands in the lower jaw, which consisted of tubules with mucinous properties and seromucous acini. The secretory granules of the seromucous cells also showed high electron density. The cytoplasm was rich in rough endoplasmic reticulum, mitochondria, and Golgi apparatus, suggesting that these cells may secrete protein substances, and play an important role in digesting mollusks. This study provides evidence of morphological convergence between Pareidae and Dipsadidae due to specialized diet adaptation, which will be the foundation for prospective functional research.


Broadley D. G. 1979. Predation on reptile eggs by African snakes of the genus Prosymna. Herpetologica, 35(4): 338–341
Chang K. X., Huang B. H., Luo M. X., Huang C. W., Wu S. P., Nguyen H. N., Lin S. M. 2021. Niche partitioning among three snail-eating snakes revealed by dentition asymmetry and prey specialisation. J Anim Ecol, 90(4): 967–977
Christin P. A., Weinreich D. M., Besnard G. 2010. Causes and evolutionary significance of genetic convergence. Trends Genet, 26(9): 400–405
Coleman K., Rothfuss L. A., Ota H., Kardong K. V. 1993. Kinematics of egg-eating by the specialized Taiwan snake Oligodon formosanus (Colubridae). J Herpetol, 27(3): 320–327
Cundall D., Greene H. W. 2000. Feeding in snakes. In: Schwenk, K. (Ed.), Feeding: Form, Function, and Evolution in Tetrapod Vertebrates. San Diego: Academic Press, 293–333
Danaisawadi P., Asami T., Ota H., Sutcharit C., Panha S. 2016. Predatory behavior of the snail-eating snake Pareas carinatus (Boie, 1828) (Squamata: Pareidae): An ethogram study. Trop Nat Hist, 16(4): 21–31
de Oliveira L., da Costa Prudente A. L., Zaher H. 2014. Unusual labial glands in snakes of the genus Geophis Wagler, 1830 (Serpentes: Dipsadinae). J Morphol, 275(1): 87–99
de Oliveira L., Jared C., da Costa Prudente A. L., Zaher H., Antoniazzi M. M. 2008. Oral glands in dipsadine “goo-eater” snakes: Morphology and histochemistry of the infralabial glands in Atractus reticulatus, Dipsas indica, and Sibynomorphus mikanii. Toxicon, 51(5): 898–913
de Oliveira L., Scartozzoni R. R., de Almeida-Santos S. M., Jared C., Antoniazzi M. M., Salom?o M. D. G. 2016. Morphology of Duvernoy’s glands and maxillary teeth and a possible function of the Duvernoy’s gland secretion in Helicops modestus Gunther, 1861 (Serpentes: Xenodontinae). S Am J Herpetol, 11(1): 54–65
Deepak V., Ruane S., Gower D. J. 2018. A new subfamily of fossorial colubroid snakes from the Western Ghats of peninsular India. J Nat Hist, 52(45): 2919–2934
dos Santos M. M., da Silva F. M., Hingst-Zaher E., Machado F. A., Zaher H., Prudente A. L. 2017. Cranial adaptations for feeding on snails in species of Sibynomorphus (Dipsadidae: Dipsadinae). Zoology, 120: 24–30
Dunn E. R. 1951. The status of the snake genera Dipsas and Sibon, a problem for “quantum evolution.”. Evolution, 5(4): 355–358
G?tz M. 2002. The feeding behavior of the snail-eating snake Pareas carinatus Wagler 1830 (Squamata : Colubridae). Amphibia-Reptilia, 23(4): 487–493
Greene H. W. 1997. Snakes: the evolution of mystery in nature. Berkeley: University of California Press, 1–357
Hoso M. 2017. Asymmetry of mandibular dentition is associated with dietary specialization in snail-eating snakes. PeerJ, 5: e3011
Hoso M., Asami T., Hori M. 2007. Right-handed snakes: convergent evolution of asymmetry for functional specialization. Biol Lett, 3(2): 169–173
Ichikawa M., Ichikawa A. 1975. The fine structure of the parotid gland of the Mongolian gerbil, Meriones meridianus. Arch Hist Japon, 38(1): 1–16
Jayne B. C., Voris H. K., Ng P. K. 2018. How big is too big? Using crustacean-eating snakes (Homalopsidae) to test how anatomy and behaviour affect prey size and feeding performance. Biol J Linn Soc, 123(3): 636–650
Kardong K. V., Luchtel D. L. 1986. Ultrastructure of Duvernoy’s gland from the wandering garter snake, Thamnophis elegans vagrans (Serpentes, Colubridae). J Morphol, 188(1): 1–13
Kiernan J. 2015. Histological and Histochemical Methods: Theory and Practice. 5th ed. London: Scion Publishing Press, 1–588
Kochva E. 1978. Oral glands of the reptilia. In: Gans C, editor. Biology of the Reptilia, Vol. 8. New York: Academic Press, 1–782
Kojima Y., Fukuyama I., Kurita T., Bin Hossman M. Y., Nishikawa K. 2020. Mandibular sawing in a snail-eating snake. Sci Rep, 10(1): 1–5
Laporta-Ferreira I. L., Salom?o M. D. G. 1991. Morphology, physiology and toxicology of the oral glands of a tropical cochleophagous snake, Sibynomorphus neuwiedi (Colubridae-Dipsadinae). Zool Anz, 227(3): 198–208
Li J. N., Liang D., Wang Y. Y., Guo P., Huang S., Zhang P. 2020. A large-scale systematic framework of Chinese snakes based on a unified multilocus marker system. Mol Phylogen Evol, 148: 106807
Lillywhite H. B. 2014. How Snakes Work: Structure, Function and Behavior of the World’s Snakes. New York: Oxford University Press, 37–75
Peng Z. L., Wu W., Tang C. Y., Ren J. L., Jiang D., Li J. T. 2022. Transcriptome analysis reveals olfactory system expression characteristics of aquatic snakes. Front Genet, 13: 825974
Peters J. A. 1960. The snakes of the subfamily Dipsadinae. Miscellaneous Publications, Museum of Zoology, University of Michigan, 114: 1–224
Poyarkov N. A., Nguyen T. V., Pawangkhanant P., Yushchenko P. V., Brakels P., Nguyen L. H., Nguyen H. N., Suwannapoom C., Orlov N., Vogel G. 2022. An integrative taxonomic revision of slug-eating snakes (Squamata: Pareidae: Pareineae) reveals unprecedented diversity in Indochina. PeerJ, 10: 1–99
Rosenberg H. I. 1967. Histology, histochemistry, and emptying mechanism of the venom glands of some elapid snakes. J Morphol, 123(2): 133–155
Sabatini D. D., Bensch K., Barrnett R. J. 1963. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol, 17(1): 19–58
Salom?o M. D. G., Laporta-Ferreira I. L. 1994. The role of secretions from the supralabial, infralabial, and Duvernoy’s glands of the slug-eating snake Sibynomorphus mikanii (Colubridae: Dipsadinae) in the immobilization of molluscan prey. J Herpetol, 28(3): 369–371
Sazima I. 1989. Feeding behavior of the snail-eating snake, Dipsas indica. J Herpetol, 23(4): 464–468
Stern D. L. 2013. The genetic causes of convergent evolution. Nat Rev Genet, 14(11): 751–764
Storz J. F. 2016. Causes of molecular convergence and parallelism in protein evolution. Nat Rev Genet, 17(4): 239–250
Taub A. M. 1966. Ophidian cephalic glands. J Morphol, 118(4): 529–541
Taub A. M. 1967. Comparative histological studies on Duvernoy’s gland of colubrid snakes. Bull Am Mus Nat Hist N Y, 138: 1–50
Wang P., Che J., Liu Q., Li K., Jin J. Q., Jiang K., Shi L., Guo P. 2020. A revised taxonomy of Asian snail-eating snakes Pareas (Squamata, Pareidae): evidence from morphological comparison and molecular phylogeny. Zookeys, 939: 45–64
Webb J. K., Shine R., Branch W. R., Harlow P. S. 2000. Life-history strategies in basal snakes: reproduction and dietary habits of the African thread snake Leptotyphlops scutifrons (Serpentes: Leptotyphlopidae). J Zool, 250(3): 321–327
Yoshie S., Ishiyama M., Ogawa T. 1982. Fine structure of Duvernoy’s gland of the japanese colubrid snake, Rhabdophis tigrinus. Arch Hist Japon, 45(4): 375–384
Zaher H., de Oliveira L., Grazziotin F. G., Campagner M., Jared C., Antoniazzi M. M., Prudente A. L. 2014. Consuming viscous prey: a novel protein-secreting delivery system in neotropical snail-eating snakes. BMC Evol Biol, 14(1): 1–28
Zaher H., Murphy R. W., Arredondo J. C., Graboski R., Machado-Filho P. R., Mahlow K., Montingellil G. G., Quadros A. B., Orlov N. L., Wilkinson M., Zhang Y. P., Grazziotin F. G. 2019. Large-scale molecular phylogeny, morphology, divergence-time estimation, and the fossil record of advanced caenophidian snakes (Squamata: Serpentes). PLoS ONE, 14(5): e0216148
Zhao E. M. 2006. Snakes of China. Vol. 1. Hefei: Anhui Science Technology Publishing House, 243–245 (in Chinese)
Zug G. R. 1993. Herpetology: An Introductory Biology of Amphibians and Reptiles. San Diego: Academic Press, 1–527


Last Update: 2022-09-25