Hongliang LU,Yingchao HU,Changqing XU,et al.Developmental and Liver Metabolite Changes Induced by TPhP Exposure in Brown Frog (Rana zhenhaiensis) Tadpoles[J].Asian Herpetological Research(AHR),2021,12(1):135-142.[doi:10.16373/j.cnki.ahr.200044]
Click Copy

Developmental and Liver Metabolite Changes Induced by TPhP Exposure in Brown Frog (Rana zhenhaiensis) Tadpoles
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

Issue:
2021 VoI.12 No.01
Page:
135-142
Research Field:
Publishing date:
2021-03-25

Info

Title:
Developmental and Liver Metabolite Changes Induced by TPhP Exposure in Brown Frog (Rana zhenhaiensis) Tadpoles
Author(s):
Hongliang LU1 Yingchao HU1 Changqing XU2 Wei DANG1 Zhihua LIN3*
1Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
2 Medical School, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
3 College of Ecology, Lishui University, Lishui 323000, Zhejiang, China
Keywords:
larval development liver metabolite triphenyl phosphate exposure Zhenhai brown frog
PACS:
-
DOI:
10.16373/j.cnki.ahr.200044
Abstract:
As an organophosphorus compound that frequently detected in water samples, triphenyl phosphate (TPhP) has been showed to have multiple toxicological effects on aquatic species. However, no attention has been paid to its potential impact on non-model amphibian species. Here, tadpoles of the Zhenhai brown frog (Rana zhenhaiensis) were exposed to different concentrations of TPhP (0, 0.02 and 0.1 mg/L) throughout the developmental period to assess physiological and metabolic impacts of TPhP exposure on amphibian larvae. After 30-day TPhP exposure, the developmental stage of tadpoles from the high-concentration treatment appeared to be more advanced than that from the other two treatments, but other measured traits (including body size, tail length and liver weight) did not differ among treatments. Metabolite profiles in tadpole livers based on liquid chromatography-mass spectrometry (LC-MS) revealed a distinct metabolic disorder in exposed animals. Specifically, significant changes in various hepatic amino acids (such as glutamine, glutamate, valine and leucine) were observed. Overall, our results indicated that chronic TPhP exposure potentially caused developmental and hepatic physiological changes in R. zhenhaiensis tadpoles, although its impact on tadpole growth appeared to be minor.

References:

Alam T. M., Alam M. K., Neerathilingam M., Volk D. E., Sarkar S., Shakeel Ansari G. A., Luxon B. A. 2010. 1H NMR metabonomic study of rat response to tri-phenyl phosphate and tri-butyl phosphate exposure. Metabolomics, 6: 386–394
Alam T. M., Neerathilingam M., Alam M. K., Volk D. E., Ansari G. A., Sarkar S., Luxon B. A. 2012. 1H nuclear magnetic resonance (NMR) metabolomic study of chronic organophosphate exposure in rats. Metabolites, 2: 479–495
Andresen J., Grundmann A., Bester K. 2004. Organophosphorus ?ame retardants and plasticisers in surface waters. Sci Total Environ, 332: 155–166
Brosnan M.E., Brosnan J. T. 2009. Hepatic glutamate metabolism: a tale of 2 hepatocytes. Am J Clin Nutr, 90: 857S–861S
Brühl C. A., Schmidt T., Pieper S., Alscher A. 2013. Terrestrial pesticide exposure of amphibians: an underestimated cause of global decline? Sci Rep, 3: 1135
Chong J., Soufan O., Li C., Caraus I., Li S., Bourque G., Wishart D. S., Xia J. 2018. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucl Acids Res, 46: W486–W494
Du Z. K., Zhang Y., Wang G. W., Peng J. B., Wang Z. Y., Gao S. X. 2016. TPhP exposure disturbs carbohydrate metabolism, lipid metabolism, and the DNA damage repair system in zebrafish liver. Sci Rep, 6: 21827
Fang Z. Z., Gonzalez F. J. 2014. LC–MS-based metabolomics: an update. Arch Toxicol, 88: 1491–1502
Fong P. P., Thompson L. B., Carfagno G. L. F., Sitton A. J. 2016. Long-term exposure to gold nanoparticles accelerates larval metamorphosis without affecting mass in wood frogs (Lithobates sylvaticus) at environmentally relevant concentrations. Environ Toxicol Chem, 35: 2304–2310
Geng B. R., Lin L., Zhang Q. J., Zhong B. J. 2010. Genotoxicity of the pesticide dichlorvos and herbicide butachlor on Rana zhenhaiensis tadpoles. Asian Herpetol Res, 1: 118–122
Gosner K. L. 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica, 16: 183–190
Green N., Schlabach M., Bakke T., Brevik E., Dye C., Herzke D., Huber S., Plosz B., Remberger M., Sch?yen M., Uggerud H. T., Vogelsang C. 2008. Screening of selected metals and new organic contaminants 2007. NIVA Report 5569–2008. in: Norwegian Pollution Control Agency (Ed.)
Guo J. H., Venier M., Salamova A., Hiets R. A. 2017. Bioaccumulation of dechloranes, organophosphate esters, and other ?ame retardants in Great Lakes ?sh. Sci Total Environ, 583: 1–9
Hong X. S., Chen R., Yuan L. L., Zha J. M. 2019. Global microRNA and isomiR expression associated with liver metabolism is induced by organophosphorus flame retardant exposure in male Chinese rare minnow (Gobiocypris rarus). Sci Total Environ, 649: 829–838
Isales G. M., Hipszer R. A., Raftery T. D., Chen A., Stapleton H. M., Volz D. C. 2015. Triphenyl phosphate-induced developmental toxicity in zebrafish: potential role of the retinoic acid receptor. Aquat Toxicol, 161: 221–230
Kim J. W., Isobe T., Chang K. H., Amano A., Maneja R. H., Zamora P. B., Siringan F. P., Tanabe S. 2011. Levels and distribution of organophosphorus ?ame retardants and plasticizers in ?shes from Manila Bay, the Philippines. Environ Pollut, 159: 3653–3659
Kim S., Jung J., Lee I., Jung D., Youn H., Choi K. 2015. Thyroid disruption by triphenyl phosphate, an organophosphate ?ame retardant, in zebra?sh (Danio rerio) embryos/larvae, and in GH3 and FRTL-5 cell lines. Aquat Toxicol, 160: 188–196
Kloas S., Lutz I. 2006. Amphibians as models to study endocrine disruptors. J Chromatogr A, 1130: 16–27
Kovacevic V., Simpson A. J., Simpson M. J. 2018. Investigation of Daphnia magna sub-lethal exposure to organophosphate esters in the presence of dissolved organic matter using 1H NMR-based metabolomics. Metabolites, 8: 34
Kovacevic V., Simpson A. J., Simpson M. J. 2019. Metabolic profiling of Daphnia magna exposure to a mixture of hydrophobic organic contaminants in the presence of dissolved organic matter. Sci Total Environ, 688: 12521262
Li Y., Wang C., Zhao F., Zhang S. Y., Chen R., Hu J. Y. 2018. Environmentally relevant concentrations of the organophosphorus flame retardant triphenyl phosphate (TPHP) impaired testicular development and reproductive behaviors in Japanese medaka (Oryzias latipes). Environ Sci Technol Lett, 5: 649–654
Lin K. 2009. Joint acute toxicity of tributyl phosphate and triphenyl phosphate to Daphnia magna. Environ Chem Lett, 7: 309–312
Liu C. S., Wang Q. W., Liang K., Liu J. F., Zhou B. S., Zhang X. W., Liu H. L., Giesy J. P., Yu H. X. 2013a. E?ects of tris(1,3-dichloro-2-propyl) phosphate and triphenyl phosphate on receptor associated mRNA expression in zebra?sh embryos/larvae. Aquat Toxicol, 128–129: 147–157
Liu X., Ji K., Jo A., Moon H. B., Choi K. 2013b. E?ects of TDCPP or TPP on gene transcriptions and hormones of HPG axis, and their consequences on reproduction in adult zebra?sh (Danio rerio). Aquat Toxicol, 134–135: 104–111
Liu X., Jung D., Jo A., Ji K., Moon H. B., Choi K. 2016. Long-term exposure to triphenylphosphate alters hormone balance and HPG, HPI, and HPT gene expression in zebrafish (Danio rerio). Environ Toxicol Chem, 35: 2288–2296
Liu Y. E., Huang L. Q., Luo X. J., Tan X. X., Huang C. C., Corella P. Z., Mai B. X. 2018. Determination of organophosphorus ?ame retardants in ?sh by freezing-lipid precipitation, solid phase extraction and gas chromatography-mass spectrometry. J Chromatogr A, 1532: 68–73
Lu X., Zhao X. J., Bai C. M., Zhao C. X., Lu G., Xu G. W. 2008. LC-MS-based metabonomics analysis. J Chromatogr B, 866: 64–76
McGee S. P., Konstantinov A., Stapleton H. M., Volz D. C. 2013. Aryl phosphate esters within a major Penta BDE replacement product induce cardiotoxicity in developing zebra?sh embryos: potential role of the aryl hydrocarbon receptor. Toxicol Sci, 142: 445–454
Mitchell C. A., Dasgupta S., Zhang S., Stapleton H. M., Volz D. C. 2018. Disruption of nuclear receptor signaling alters triphenyl phosphate-induced cardiotoxicity in zebra?sh embryos. Toxicol Sci, 163: 307–318
Newsholme P., Procopio J., Lima M. M. R., Pithon-Curi T. C., Curi R. 2003. Glutamine and glutamate-their central role in cell metabolism and function. Cell Biochem Funct, 21: 1–9
Noyes P. D., Haggard D. E., Gonnerman G. D., Tanguay R. L. 2015. Advanced morphological-behavioral test platform reveals neurodevelopmental defects in embryonic zebra?sh exposed to comprehensive suite of halogenated and organophosphate ?ame retardants. Toxicol Sci, 145: 177–195
Oliveira E., Barata C., Pi?a B. 2016. Endocrine disruption in the Omics Era: New views, new hazards, new approaches. Open Biotechnol J, 10: 20–35
Rose C. S. 2005. Integrating ecology and developmental biology to explain the timing of frog metamorphosis. Trends Ecol Evol, 20: 129–135
Scanlan L. D., Loguinov A. V., Teng Q., Antczak P., Dailey K. P., Nowinski D. T., Kornbluh J., Lin X., Lachenauer E., Arai A., Douglas N. K., Falciani F., Stapleton H. M., Vulpe C. D. 2015. Gene transcription, metabolite and lipid profiling in eco-indicator Daphnia magna indicate diverse mechanisms of toxicity by legacy and emerging flame-retardants. Environ Sci Technol, 49: 7399–7409
Shi Q. P., Wang M., Shi F. Q., Yang L. H., Guo Y. Y., Feng C. L., Liu J. F., Zhou B. S. 2018. Developmental neurotoxicity of triphenyl phosphate in zebra?sh larvae. Aquat Toxicol, 203: 80–87
Shi Q. P., Tsui M. M. P., Hu C. Y., Lam J. C. W., Zhou B. S., Chen L. G. 2019. Acute exposure to triphenyl phosphate (TPhP) disturbs ocular development and muscular organization in zebrafish larvae. Ecotoxicol Environ Safety, 179: 119–126
Stapleton H. M., Klosterhaus S., Eagle S., Fuh J., Meeker J. D., Blum A., Webster T. F. 2009. Detection of organophosphate ?ame retardants in furniture foam and U.S. house dust. Environ Sci Technol, 43: 7490–7495
Tan X. X., Luo X. J., Zheng X. B., Li Z. R., Sun R. X., Mai B. X. 2016. Distribution of organophosphorus ?ame retardants in sediments from the Pearl River Delta in South China. Sci Total Environ, 544: 77–84
Tautenhahn R., Patti G. J., Rinehart D., Siuzdak G. 2012. XCMS online: a web-based platform to process untargeted metabolomic data. Anal Chem, 84: 5035–5039
Thomas O. 2013. The complex role of branched chain amino acids, in diabetes and cancer. Metabolites, 3: 931–945
Van der Veen I., de Boer J. 2012. Phosphorus ?ame retardants: properties, production, environmental occurrence, toxicity and analysis. Chemosphere, 88: 1119–1153
Wang G. W., Du Z. K., Chen H. Y., Su Y., Gao S. X., Mao L. 2016. Tissue-specific accumulation, depuration, and transformation of triphenyl phosphate (TPHP) in adult zebrafish (Danio rerio). Environ Sci Technol, 50: 13555–13564
Wang G. W., Shi H. H., Du Z. K., Chen H. Y., Peng J. B., Gao S. X. 2017. Bioaccumulation mechanism of organophosphate esters in adult zebra?sh (Danio rerio). Environ Pollut, 229: 177–187
Wei G. L., Li D. Q., Zhuo M. N., Liao Y. S., Xie Z. Y., Guo T. L., Li J. J., Zhang S. Y., Liang Z. Q. 2015. Organophosphorus ?ame retardants and plasticizers: sources, occurrence, toxicity and human exposure. Environ Pollut, 196: 29–46
Wei L., Ding G. H., Guo S. N., Tong M. L., Chen W. J., Flanders J., Shao W. W., Hao X. L., Lin Z. H. 2015. Toxic effects of three heavy metallic ions on Rana zhenhaiensis tadpoles. Asian Herpetol Res, 6: 132–142
Yuan S. L., Li H., Dang Y., Liu C. S. 2018. Effects of triphenyl phosphate on growth, reproduction and transcription of genes of Daphnia magna. Aquat Toxicol, 195: 58–66
Zhang S. H., Zeng X. F., Ren M., Mao X. B., Qiao S. Y. 2017. Novel metabolic and physiological functions of branched chain amino acids: a review. J Anim Sci Biotechnol, 8: 10
Zhang Y., Zheng X. B., Wei L. F., Sun R. X., Guo H. Y., Liu X. Y., Liu S. Y., Li Y., Mai B. X. 2018. The distribution and accumulation of phosphate ?ame retardants (PFRs) in water environment. Sci Total Environ, 630: 164–170
Zhang X. L., Zou W, Zhou Q. X. 2019. Molecular mechanisms of developmental toxicity of triphenyl phosphate on zebrafish embryo revealed by metabonomics. Asian J Ecotoxicol, 14: 79–89 (in Chinese)
Zhao H. Q., Liu L., Li Y, Zhao F. R., Zhang S. Y., Mu D., Liu J. X., An L. H., Wan Y, Hu J. Y. 2019. Occurrence, bioaccumulation, and trophic transfer of oligomeric organophosphorus flame retardants in an aquatic environment. Environ Sci Technol Lett, 6: 323–328

Memo

Memo:
-
Last Update: 2021-03-25