Fang ZHANG,Yatao WU,Jinmei WANG,et al.Calls of the Large Odorous Frog (Odorrana graminea) Show Nonlinear and Individual Characteristics[J].Asian Herpetological Research(AHR),2021,12(1):124-134.[doi:10.16373/j.cnki.ahr.200070]
Click Copy

Calls of the Large Odorous Frog (Odorrana graminea) Show Nonlinear and Individual Characteristics
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

2021 VoI.12 No.01
Research Field:
Publishing date:


Calls of the Large Odorous Frog (Odorrana graminea) Show Nonlinear and Individual Characteristics
Fang ZHANG12* Yatao WU1 Jinmei WANG1 Jiahui BAO1
1College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
2 Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Wuhu 241000, Anhui, China
Anurans call-type individual signatures nonlinear phenomena sound communication
Male large odorous frogs (Odorrana graminea) have been shown to have a rich vocal repertoire and their calls contain harmonics that extend into the ultrasonic range, much like calls of male O. tormota, a sympatric species. Whereas vocalizations of male O. tormota exhibit nonlinear characteristics and contain individual signatures, it is unclear whether or not those of O. graminea do. We carried out an extensive study of the vocalizations of male O. graminea with the goal of investigating whether they: (1) contained nonlinear phenomena (NLP), (2) carried individual signatures. We recorded and analyzed 1770 vocal calls from nine males. Their calls were classifiable into two distinct categories (one-note calls and multi-note calls). Of these, one-note complex/steep-frequency modulation call was the most abundant call-type. These calls showed diverse frequency modulation patterns, and abundant presence of NLP. Various basic spectral and temporal parameters of such calls were individually distinct. Kruskal-Wallis Analysis of Rank test showed that the calls from individual males differed significantly. Subsequent discriminant function analysis (DFA) showed that 54.7% of the calls could be correctly assigned to individual. These results suggested that male O. graminea might be able to discriminate neighboring frogs from strangers acoustically. However, further research is necessary to demonstrate this capacity behaviorally.


Arch V. S., Grafe T. U., Narins P. M. 2008. Ultrasonic signalling by a Bornean frog.?Biol Lett, 4: 19–22
Bee M. A., Perrill S. A., Owen P. C. 1999. Size assessment in simulated territorial encounters between male green frogs (Rana clamitans). Behav Ecol Sociobiol, 45: 177–184
Bee M. A., Gerhardt H. C. 2001. Neighbour-stranger discrimination by territorial male bullfrogs (Rana catesbeiana): i. acoustic basis.?Anim Behav,?62: 1129–1140
Bee M. A., Reichert M. S., Tumulty J. 2016. Assessment and recognition of rivals in anuran contests. Adv Study Behav, 48: 161–249
Boersma P., Weenink D. PRAAT: doing phonetics by computer (Version 5.2.22) [Computer program]. Retrieved from
Briefer E., Aubin T., Lehongre K., Rybak F. 2008. How to identify dear enemies: the group signature in the complex song of the skylark Alauda arvensis. J Exp Biol, 211: 317–326
Chen B. H. 1991. Anhui Amphibia and Reptilia. Anhui Press of Sciences and Technology, China (In Chinese)
Falls J. B. 1982. Individual recognition by sound in birds. In: Acoustic Communication in Birds (Kroodsma, D. E. & Miller, E. H., eds). Academic Press, New York, NY, pp. 237–278
Feng A. S., Narins P. M., Xu C. H., Lin W. Y., Yu Z. L., Qiu Q., Xu Z. M., Shen J. X. 2006. Ultrasonic communication in frogs. Nature, 440: 333–336
Feng A. S., Arch V. S., Yu Z. L., Yu X. J., Xu Z. M., Shen J. X. 2009a. Neighbor–stranger discrimination in concave‐eared torrent frogs, Odorrana tormota. Ethology,?115: 851–856.
Feng A. S., Tobias R., Arch V. S., Yu Z. L., Xu Z. M., Yu X. J., Shen J. X. 2009b. Diversity of the vocal signals of concave-eared torrent frogs (Odorrana tormota): evidence for individual signatures.?Ethology,?115: 1015–1028.
Fisher J. 1954. Evolution and bird sociality. Pp. 71–83 in Evolution as a Process (J. Huxley, A.C. Hardy, and E.B. Ford, eds.). Allen & Unwin, England
Fitch W. T., Neubauer J., Herzel H. 2002. Calls out of chaos: the adaptive significance of nonlinear phenomena in mammalian vocal production.?Anim Behav,?63: 407–418
Gasser H., Amézquita A., H?dl W. 2009. Who is calling? Intraspecific call variation in the aromobatid frog Allobates femoralis. Ethology, 115: 596–607
Gerhardt H. C. 1978. Temperature coupling in the vocal communication system of the gray tree frog, Hyla versicolor. Science. 199: 992–994
Herzel H. 1993. Bifurcations and chaos in voice signals.?Appl Mech Rev, 46: 399–413.
Linhart P., ?álek M. 2017. The assessment of biases in the acoustic discrimination of individuals. Plos One. 12:e0177206
Moosman D. L., Moosman Jr. P. R. 2006. Subcutaneous movements of visible implant elastomers in wood frogs (Rana sylvatica). Herpetol Rev. 37: 300–301
Narins P. M., Feng A. S., Lin W., Schnitzler H., Denzinger A., Suthers R. A., Xu C. 2004. Old World frog and bird vocalizations contain prominent ultrasonic harmonics.?J Acoust Soc Am, 115: 910–913.
Pohar M., Blas M., Turk S. 2004. Comparison of logistic regression and linear discriminant analysis: A simulation study. Metodoloski Zvezki 1: 143–161
Riede T. 1997. Individual differences in the vocalization of Japanese macaque infants (Macaca fuscata). Primate Report, 47: 31–47
Riede T., Wilden I., Tembrock G. 1997. Subharmonics, biphonations, and frequency jumps common components of mammalian vocalization or indicators for disorders? Zeitschrift fur Saugetierkunde 62(Suppl. II): 198–203
Riede T., Herzel H., Mehwald D., Seidner W., Trumler E., B?hme G. 2000. Nonlinear phenomena in the natural howling of a dog–wolf mix. J Acoust Soc Am,?108: 1435–1442
Riede T., Owren M. J., Arcadi A. C. 2004. Nonlinear acoustics in pant hoots of common chimpanzees (Pan troglodytes): frequency jumps, subharmonics, biphonation, and deterministic chaos.?Am J Primatol,?64: 277–291
Shen J. X., Feng A. S., Xu Z. M., Yu Z. L., Arch V. S., Yu X. J. 2008. Ultrasonic frogs show hyperacute phonotaxis to female courtship calls.?Nature,?453: 914–917
Shen J., Yu Z. L., Feng A. S., Narins P. M. 2011. Large odorous frogs (Odorrana graminea) produce ultrasonic calls.?J Comp Physiol A, 197: 1027–1030
Solow A. R. 1990. A randomization test for misclassification probability in discriminant analysis. Ecology, 71: 2379–2382
Temeles E. J. 1994. The role of neighbours in territorial systems: when are they ‘dear enemies’? Anim Behav, 47: 339–350
Titus K., Mosher J. A., Williams B. K. 1984. Chance-corrected classification for use in discriminant analysis: ecological applications.?Am Midl Nat, 111: 1–7
Titze I., Riede T., Popolo P. 2008. Nonlinear source-filter coupling in phonation: vocal exercises.?J Acoust Soc Am, 123: 1902–1915
Volodina E. V., Volodin I. A., Isaeva I. V., Unck C. 2006. Biphonation may function to enhance individual recognition in the dhole, Cuon alpinus. Ethology, 112: 815–825
Wilden I., Herzel H., Peters G., Tembrock G. 1998. Subharmonics, biphonation, and deterministic chaos in mammal vocalization. Bioacoustics, 9: 171–196
Zhang F., Chen P., Chen Z. Q., Zhao J. 2015. Ultrasonic frogs call at a higher pitch in noisier ambiance. Curr Zool, 61: 996–1003
Zhang F., Zhao J., Chen P., Chen Z. Q., Chen Y. Y., Feng A. S. 2016. Heterogeneity of vocal sac inflation patterns in Odorrana tormota playsa role in call diversity, J Acoust Soc Am, 139: 1018–1023
Zhang F., Zhao J., Feng A. S. 2017. Vocalizations of female frogs contain nonlinear characteristics and individual signatures. Plos One, 12:e0174815
Zhang F., Yuan C., Feng A. S. 2020. Female concave-eared torrent frogs prefer smaller males. J Zool, doi:10.1111/jzo.12775
Zollinger S. A., Riede T., Suthers R. A. 2008. Two-voice complexity from a single side of the syrinx in northern mockingbird Mimus polyglottos vocalizations.?J Exp Biol,?211: 1978–1991


Last Update: 2021-03-25