Ke DENG,Yue YANG,Jianguo CUI.Call Characteristic Network Reveal Geographical Patterns of Call Similarity: Applying Network Analysis to Frog’s Call Research[J].Asian Herpetological Research(AHR),2021,12(1):110-116.[doi:10.16373/j.cnki.ahr.200082]
Click Copy

Call Characteristic Network Reveal Geographical Patterns of Call Similarity: Applying Network Analysis to Frog’s Call Research
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

Issue:
2021 VoI.12 No.01
Page:
110-116
Research Field:
Publishing date:
2021-03-25

Info

Title:
Call Characteristic Network Reveal Geographical Patterns of Call Similarity: Applying Network Analysis to Frog’s Call Research
Author(s):
Ke DENG Yue YANG Jianguo CUI*
CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
Keywords:
acoustic feature anurans Chiromantis doriae eigenvector centrality geographical population
PACS:
-
DOI:
10.16373/j.cnki.ahr.200082
Abstract:
Individual’s phenotypic traits are the results of adaptation to ecological conditions. Therefore, different selection pressures caused by heterogeneous environments may result in phenotypic difference, especially for individuals in different geographical populations. Here, we illustrated for the first time to use social network analysis (SNA) for examining whether geographical proximity predict the similarity patterns in call characteristics among populations of an anuran species. We recorded calls from 150 male dorsal-striped opposite-fingered treefrogs (Chiromantis doriae) at 11 populations in Hainan Province and one population in Guangdong Province in mainland China, and we measured eight acoustic variables for each male. Mantel test didn’t show a correlation between geographical proximity and the similarity in call characteristics among populations. In addition, we failed to find correlations between a population’s eigenvector centrality and the distance to its nearest neighbor, nor between the coefficient of variation of similarity in call characteristics of a population and the average distance to all other populations. Nevertheless, three acoustic clusters were identified by the Girvan-Newman algorithm, and clustering was partially associated with geography. Furthermore, the most central populations were included in the same cluster, but the top betweenness populations were located within different clusters, suggesting that centrality populations are not necessary bridging between clusters. These results demonstrate the potential usefulness of the SNA toolbox and indicate that SNA helps to uncover the patterns that often overlooked in other analytical methods. By using SNA in frog’s call studies, researchers could further uncover the potential relationship in call characteristics between geographical populations, further reveal the effects of ecological factors on call characteristics, and probably enhance our understanding of the adaptive evolution of acoustic signals.

References:

Ahonen H., Stow A. J., Harcourt R. G., Charrier I. 2014. Adult male Australian sea lion barking calls reveal clear geographical variations. Anim Behav, 97: 229–239
Araya-Salas M., Smith-Vidaurre G., Mennill D. J., Gonzalez-Gomez P. L., Cahill J., Wright T. F. 2019. Social group signatures in hummingbird displays provide evidence of co-occurrence of vocal and visual learning. P Roy Soc Lond B Bio, 286(1903): 20190666
Bernal X. E., Guarnizo C., Luddecke H. 2005. Geographic variation in advertisement call and genetic structure of Colostethus palmatus (Anura, Dendrobatidae) from the Colombian Andes. Herpetologica, 61(4): 395–408
Branch C. L., Pravosudov V. V. 2019. Variation in song structure along an elevation gradient in a resident songbird. Behav Ecol Sociobiol, 74(1): 9
Casey C., Reichmuth C., Costa D. P., Le Boeuf B. 2018. The rise and fall of dialects in northern elephant seals. P Roy Soc Lond B Bio, 285(1892): 20182176
Chen Z. Q., Lin Y. F., Tang Y., Ding G. H., Wu Y. Q., Lin Z. H. 2020. Acoustic divergence in advertisement calls among three sympatric Microhyla species from East China. PeerJ, 8: e8708
Chirikova M. A., Dujsebayeva T. N., Liu J. L., Guo X. G. 2019. Geographical distribution and morphological variability of the rapid racerunner, Eremias velox (Pallas, 1771) (Reptilia, Lacertidae) in the eastern periphery of its range. Asian Herpetol Res, 10(4): 230–245
Croft D. P., Darden S. K., Wey T. W. 2016. Current directions in animal social networks. Curr Opin Behav Sci, 12: 52–58
Csárdi G., Nepusz T. 2006. The IGRAPH software package for complex network research. InterJournal Complex Systems, 1695: 1–9
Cui J. G., Tang Y. Z., Narins P. M. 2012. Real estate ads in Emei music frog vocalizations: Female preference for calls emanating from burrows. Biol Letters, 8(3): 337–340
de Silva S., Ranjeewa A. D. G., Kryazhimskiy S. 2011. The dynamics of social networks among female Asian elephants. BMC Ecol, 11: 17
Deng K., Cui J. G. 2019. Vocal networks remain stable after a disturbance in Emei music frogs. Ecol Evol, 9(16): 9290–9297
Deng K., Liu W., Wang D. H. 2017. Inter-group associations in Mongolian gerbils: Quantitative evidence from social network analysis. Integr Zool, 12(6): 446–456
Eisinger J. W., Scheibe J. S., Flaherty E. A. 2016. Novel Glaucomys volans vocalizations in Indiana and evidence of geographic variation in high frequency communication. J Mammal, 97(4): 1219–1227
Ey E., Fischer J. 2009. The “Acoustic Adaptation Hypothesis” - a review of the evidence from birds, anurans and mammals. Bioacoustics, 19(1-2): 21–48
Farine D. R. 2017. When to choose dynamic vs. static social network analysis. J Anim Ecol, 87(1): 128–138
Farine D. R., Whitehead H. 2015. Constructing, conducting and interpreting animal social network analysis. J Anim Ecol, 84(5): 1144–1163
Fountain-Jones N. M., Packer C., Troyer J. L., VanderWaal K., Robinson S., Jacquot M., Craft M. E. 2017. Linking social and spatial networks to viral community phylogenetics reveal subtype specific transmission dynamics in African lions. J Anim Ecol, 86(6): 1469-1482
Gerhardt H. C. 1994. The evolution of vocalization in frogs and toads. Annu Rev Ecol Syst, 25: 293–324
Gerhardt H. C., Huber F. 2002. Acoustic communication in insects and anurans. Chicago: University of Chicago Press
Gingras B., Mohandesan E., Boko D., Fitch W. T. 2013. Phylogenetic signal in the acoustic parameters of the advertisement calls of four clades of anurans. BMC Evol Biol, 13: 134
Girvan M., Newman M. E. J. 2002. Community structure in social and biological networks. Proc Natl Acad Sci USA, 99(12): 7821–7826
Goicoechea N., De La Riva I., Padial J. M. 2010. Recovering phylogenetic signal from frog mating calls. Zool Scr, 39(2): 141–154
Goutte S., Dubois A., Howard S. D., Marquez R., Rowley J. J. L., Dehling J. M., Grandcolas P., Xiong R. C., Legendre F. 2018. How the environment shapes animal signals: A test of the acoustic adaptation hypothesis in frogs. J Evol Biol, 31(1): 148–158
Henry L., Barbu S., Lemasson A., Hausberger M. 2015. Dialects in animals: Evidence, development and potential functions. Anim Behav Cogn, 2(2): 132–155
Krause J., Croft D. P., James R. 2007. Social network theory in the behavioural sciences: Potential applications. Behav Ecol Sociobiol, 62(1): 15–27
Kurvers R. H. J. M., Krause J., Croft D. P., Wilson A. D. M., Wolf M. 2014. The evolutionary and ecological consequences of animal social networks: Emerging issues. Trends Ecol Evol, 29(6): 326–335
Lameira A. R., Delgado R. A., Wich S. A. 2010. Review of geographic variation in terrestrial mammalian acoustic signals: Human speech variation in a comparative perspective. J Evol Psy, 8(4): 309–332
Lengagne T., Ferrandiz-Rovira M., Superbie C., Figueroa I., Bichet C., Claramunt-Lopez B., Cohas A. 2020. Geographic variation in marmots’ alarm calls causes different responses. Behav Ecol Sociobiol, 74(8): 97
Li J. T., Li Y., Klaus S., Rao D. Q., Hillis D. M., Zhang Y. P. 2013. Diversification of rhacophorid frogs provides evidence for accelerated faunal exchange between India and Eurasia during the Oligocene. Proc Natl Acad Sci USA, 110(9): 3441–3446
Liu Q. C., Wang T. L., Zhai X. F., Wang J. C. 2018. Call characteristics of two sympatric and morphologically similar tree frogs species, Polypedates megacephalus and Polypedates mutus (Anura: Rhacophoridae), from Hainan, China. Asian Herpetol Res, 9(4): 240–249
MacDougall-Shackleton E. A., MacDougall-Shackleton S. A. 2001. Cultural and genetic evolution in mountain white-crowned sparrows: Song dialects are associated with population structure. Evolution, 55(12): 2568–2575
McFerrin L. 2013. HDMD: Statistical analysis tools for high dimension molecular data. Retrieved from https://cran.r-project.org/web/packages/HDMD/
McLean M. J., Bishop P. J., Nakagawa S. 2013. Assessing the patterns of evolution in anuran vocal sexual signals. Evol Biol, 40(1): 141–149
Meise K., Franks D. W., Bro-Jorgensen J. 2019. Using social network analysis of mixed-species groups in African savannah herbivores to assess how community structure responds to environmental change. Philos Trans R Soc Lond B Biol Sci, 374(1781): 20190009
Morueta-Holme N., Blonder B., Sandel B., McGill B. J., Peet R. K., Ott J. E., Violle C., Enquist B. J., Jorgensen P. M., Svenning J. C. 2016. A network approach for inferring species associations from co-occurrence data. Ecography, 39(12): 1139–1150
Narins P. M., Meenderink S. W. F. 2014. Climate change and frog calls: long-term correlations along a tropical altitudinal gradient. P Roy Soc Lond B Bio, 281(1783): 20140401
Newman M. E. J., Girvan M. 2004. Finding and uating community structure in networks. Phys Rev E, 69(2): 1–16
Pinter-Wollman N., Hobson E. A., Smith J. E., Edelman A. J., Shizuka D., de Silva S., Waters J. S., Prager S. D., Sasaki T., Wittemyer G., Fewell J., McDonald D. B. 2014. The dynamics of animal social networks: analytical, conceptual, and theoretical advances. Behav Ecol, 25(2): 242–255
Potvin D. A., Strickland K., MacDougall-Shackleton E. A., Slade J. W. G., Frere C. H. 2019. Applying network analysis to birdsong research. Anim Behav, 154: 95–109
Pr?hl H., Hagemann S., Karsch J., Hobel G. 2007. Geographic variation in male sexual signals in strawberry poison frogs (Dendrobates pumilio). Ethology, 113(9): 825–837
Qi X. G., Huang K., Fang G., Grueter C. C., Dunn D. W., Li Y. L., Ji W. H., Wang X. Y., Wang R. T., Garber P. A., Li B. G. 2017. Male cooperation for breeding opportunities contributes to the evolution of multilevel societies. P Roy Soc Lond B Bio, 284(1863): 20171480
Roth J. D., Marshall J. D., Murray D. L., Nickerson D. M., Steury T. D. 2007. Geographical gradients in diet affect population dynamics of Canada lynx. Ecology, 88(11): 2736–2743
Sabol A. C., Solomon N. G., Dantzer B. 2018. How to study socially monogamous behavior in secretive animals? Using social network analyses and automated tracking systems to study the social behavior of prairie voles. Front Ecol Evol, 6: 178
Silk M. J., Weber N. L., Steward L. C., Hodgson D. J., Boots M., Croft D. P., Delahay R. J., McDonald R. A. 2018. Contact networks structured by sex underpin sex-specific epidemiology of infection. Ecol Lett, 21(2): 309–318
Sosa-Lopez J. R., Martinez Gomez J. E., Mennill D. J. 2016. Divergence in mating signals correlates with genetic distance and behavioural responses to playback. J Evolution Biol, 29(2): 306–318
Trillo P. A., Athanas K. A., Goldhill D. H., Hoke K. L., Funk W. C. 2013. The influence of geographic heterogeneity in predation pressure on sexual signal divergence in an Amazonian frog species complex. J Evolution Biol, 26(1): 216–222
Velasquez N. A. 2014. Geographic variation in acoustic communication in anurans and its neuroethological implications. J Physiol-Paris, 108(2-3): 167–173
Velásquez N. A., Marambio J., Brunetti E., Mendez M. A., Vasquez R. A., Penna M. 2013. Bioacoustic and genetic divergence in a frog with a wide geographical distribution. Biol J Linn Soc, 110(1): 142–155
Wang J. C., Cui J. G., Shi H. T., Brauth S. E., Tang Y. Z. 2012. Effects of body size and environmental factors on the acoustic structure and temporal rhythm of calls in Rhacophorus dennysi. Asian Herpetol Res, 3(3): 205–212
Weiss M., Hultsch H., Adam I., Scharff C., Kipper S. 2014. The use of network analysis to study complex animal communication systems: a study on nightingale song. P Roy Soc Lond B Bio, 281(1785): 20140460
Whitehead H. 2008. Analyzing animal societies: Quantitative methods for vertebrate social analysis. London: University of Chicago Press
Wilson R. E., Peters J. L., McCracken K. G. 2013. Genetic and phenotypic divergence between low- and high-altitude populations of two recently diverged cinnamon teal subspecies. Evolution, 67(1): 170–184
Xia D. P., Kyes R. C., Wang X., Sun B. H., Sun L. X., Li J. H. 2019. Grooming networks reveal intra- and intersexual social relationships in Macaca thibetana. Primates, 60(3): 223–232
Yoktan K., Geffen E., Ilany A., Yom-Tov Y., Naor A., Leader N. 2011. Vocal dialect and genetic subdivisions along a geographic gradient in the orange-tufted sunbird. Behav Ecol Sociobiol, 65(7): 1389–1402
Ziegler L., Arim M., Bozinovic F. 2016. Intraspecific scaling in frog calls: The interplay of temperature, body size and metabolic condition. Oecologia, 181(3): 673–681
Zuk M., Rotenberry J. T., Simmons L. W. 2001. Geographical variation in calling song of the field cricket Teleogryllus oceanicus: the importance of spatial scale. J Evolution Biol, 14(5): 731–741

Memo

Memo:
-
Last Update: 2021-03-25