Kexin WANG,Yutian ZHAO,Chaochao HU,et al.Adaptive Evolution of the Ventral Scale Microornamentations among Three Snake Species[J].Asian Herpetological Research(AHR),2020,11(4):365-372.[doi:10.16373/j.cnki.ahr.200035]
Click Copy

Adaptive Evolution of the Ventral Scale Microornamentations among Three Snake Species
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

2020 VoI.11 No.4
Research Field:
Publishing date:


Adaptive Evolution of the Ventral Scale Microornamentations among Three Snake Species
Kexin WANG Yutian ZHAO Chaochao HU Hong LI Yanfu QU* and Xiang JI*
Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, Jiangsu, China
Elaphe carinata Hypsiscopus plumbea Oocatochus rufodorsata scale microornamentation snake wettabiligy
Research on the ecological effect of microronamentations on the scale surface in reptiles has been carried out over the past few decades. It is found that the microornamentation pattern in reptiles is related to their habitats. This study examined the wettability on scale surface, as well as the differences in microornamentation on ventral scales from the mid-body region in three snake species, Hypsiscopus plumbea (aquatic), Oocatochus rufodorsata (semi-aquatic) and Elaphe carinata (terricolous). Moreover, the scale specimens were metallized and analyzed using scanning electron microscopy. Our results showed that there are microornamentations on the ventral scale surfaces of the tested species, which showed interspecific differences. To be specific, the aquatic snake shows the narrow, fine and regular denticulations which are connected to reduce friction and dirt shedding. By contrast, the terrestrial snake acquired the wider and shorter denticulation which would render more friction during locomotion but it shows greater water resistance to improve the capacity of dirt shedding and compensate for the disadvantage of short and wide denticulations. Additionally, the denticulation characteristics of the semi-aquatic snake fell in between those of aquatic and terrestrial snakes. Therefore, it is deduced in this study that the ventral scale microornamentations in snakes contribute to ecological adaptation to their preferential microhabitats.


Abo-Eleneen R. E., Allam A. A. 2011. Comparative morphology of the skin of Natrix tessellata (Family: Colubridae) and Cerastes vipera (Family: Viperidae). Zool Sci, 28: 743–748
Alibardi L. 2000. Epidermal structure of normal and regenerating skin of the agamine lizard Physignatus lesueurii (McCoy, 1878) with emphasis on the formation of the shedding layer. Ann Sci Nat Zool Biol Anim, 21(1): 27–36
Alibardi L. 2003. Adaptation to the land: The skin of reptiles in comparison to that of amphibians and endotherm amniotes. J Exp Zoolog B Mol Dev Evol, 298(1): 12–41
Allam A. A., Abo-Eleneen R. E. 2012. Scales microstructure of snakes from the Egyptian area. Zool Sci, 29: 770–775
Allam A. A., Abo-Eleneen R. E., Othman S. I. 2017. Microstructure of scales in selected lizard species. Saudi J Biol Sci, 26(1): 129–136
Arnold E. N. 2002. History and function of scale microornamentation in lacertid lizards. J Morphol, 252(2): 145–169
Arrigo M. I., Vilaca L. M. D. O., Fofonjka A., Srikanthan A. N., Debry A., Milinkovitch M. C. 2019. Phylogenetic mapping of scale nanostructure diversity in snakes. BMC Evolutionary Biology, 19: 91
Autumn K., Hansen W. R. 2006. Ultrahydrophobicity indicates a non-adhesive default state in gecko setae. J Comp Physiol A, 192(11): 1205–1212
Baden H. P., Maderson P. F. A. 1970. Morphological and biophysical identification of fibrous proteins in the amniote epidermis. J Exp Zool, 174(2): 225–232
Barthlott W., Neinhuis C. 1997. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202(1): 1–8
Baum M. J., Kovalev A. E., Michels J., Gorb S. N. 2014. Anisotropic fiction of the ventral scales in the snake Lampropeltis getula californiae. Tribology Letters, 54(2): 139–150
Doucet S. M., Meadows M. G. 2009. Iridescence: A functional perspective. J Royal Soc Interface, 6(suppl 2): S115–S132
Gower D. J. 2003. Scale microornamentation of uropeltid snakes. J Morphol, 258(2): 249–268
Harvey M. B. 1993. Microstructure, ontogeny, and evolution of scale surfaces in Xenosaurid lizards. J Morphol, 216(2): 161–177
Huang M. H. 1998. Elaphe carinata. In Zhao E. M., Huang M. H., Zong Y. (Eds.) Fauna sinica, Reptilia (Squamata: Serpentes), Vol 3. Science Press, Beijing, China, 137–140 (In Chinese)
Irish F. J., Williams E. E., Seling E. 1988. Scanning electron microscopy of changes in epidermal structure occurring during the shedding cycle in squamate reptiles. J Morphol, 197(1): 105–126
Jiang Y. M. 1998. Enhydris plumbea. In Zhao E. M., Huang M. H., Zong Y. (Eds.) Fauna sinica, Reptilia (Squamata: Serpentes), Vol 3. Science Press, Beijing, China, 177–178 (In Chinese)
Kinoshita S., Yoshioka S., Miyazaki J. 2008. Physics of structural colors. Rep Prog Phys, 71(7): 076401
Klein M. C. G., Deuschle J. K., Gorb S. N. 2010. Material properties of the skin of the Kenyan sand boa Gongylophis colubrinus (Squamata, Boidae). J Comp Physiol A, 196(9): 659–668
Klein M. C. G., Gorb S. N. 2012. Epidermis architecture and material properties of the skin of four snake species. J Royal Soc Interface, 9(76): 3140–3155
Klein M. C. G., Gorb S. N. 2014. Ultrastructure and wear patterns of the ventral epidermis of four snake species (Squamata, Serpentes). Zoology, 117(5): 295–314
Krey K., Farajallah A. 2013. Skin histology and microtopography of Papuan white snake (Micropechis ikaheka) in relation to their zoogeographical distribution. HAYATI Journal of Biosciences, 20(1): 7–14
Kroiss J., Strohm E., Vandenbem C., Vigneron J. P. 2009. An epicuticular multilayer reflector generates the iridescent coloration in chrysidid wasps (Hymenoptera, Chrysididae). Naturwissenschaften, 96(8): 983–986
Mao N. 2016. 6–Methods for characterisation of?nonwoven structure, property, and performance. In Kellie G. (Ed.) Advances in Technical Nonwovens. Woodhead Publishing, 155–211
Oufiero C. E., Gartner G. E. A., Adolph S. C., Garland Jr. T. 2011. Latitudinal and climatic variation in body size and dorsal scale counts in Sceloporus lizards: A phylogenetic perspective. Evolution, 65(12): 3590–3607
Price R., Kelly P. 1989. Microdermatoglyphics: Basal patterns and transition zones. J Herpetol, 23(3): 244–261
Price R. M. 1982. Dorsal snake scale microdermatoglyphics: Ecological indicator or taxonomic tool? J Herpetol, 16(3): 294–306
Renous S., Gasc J. P. 1989. Microornamentations of the skin and spatial position of the Squamata in their environment. Fortschr Zool, 35: 597–601
Rocha-Barbosa O., Moraes-e-Silva R. 2009. Analysis of the microstructure of Xenodontinae snake scales associated with different habitat occupation strategies. Braz J Biol, 69: 919–923
Ruibal R. 1968. The ultrastructure of the surface of lizard scales. Copeia, 1968(4): 698–703
Seago A. E., Brady P., Vigneron J. P., Schultz T. D. 2009. Gold bugs and beyond: A review of iridescence and structural colour mechanisms in beetles (Coleoptera). J R Soc Interface, 6(Suppl 2): S165–S184
Shi Z., Liu Z., Song H., Zhang X. 2016. Prediction of contact angle for hydrophobic surface fabricated with micro-machining based on minimum Gibbs free energy. Appl Surf Sci, 364: 597–603
Smith H., Duvall D., Graves B., Jones R., Chiszra D. 1982. The function of squamate epidermatoglyphics. Bull Phil Herpetol Soc, 30: 3–8
Spinner M., Gorb S. N., Balmert A., Bleckmann H., Westhoff G. 2014. Non-contaminating camouflage: multifunctional skin microornamentation in the West African Gaboon viper (Bitis rhinoceros). PLoS One, 9(3): e91087
Spinner M., Gorb S. N., Westhoff G. 2013. Diversity of functional microornamentation in slithering geckos Lialis (Pygopodidae). P Roy Soc B–Biol Sci, 280(1772): 20132160
Stewart G. R., Daniel R. S. 1973. Scanning electron microscopy of scales from different body regions of three lizard species. J Morphol, 139(4): 377–388
Stewart G. R., Daniel R. S. 1975. Microornamentation of lizard scales: some variations and taxonomic correlations. Herpetologica, 31(1): 117–130
Wagner T., Neinhuis C., Barthlott W. 1996. Wettability and contaminability of insect wings as a function of their surface sculptures. Acta Zool, 77(3): 213–225
Wegener J. E., Gartner G. E. A., Losos J. B. 2014. Lizard scales in an adaptive radiation: variation in scale number follows climatic and structural habitat diversity in Anolis lizards. Biol J Linn Soc, 113(2): 570–579
Williams E. E., Peterson J. A. 1982. Convergent and alternative designs in the digital adhesive pads of scincid lizards. Science, 215(4539): 1509–1511
Zhao E. M. 1998. Elaphe rufodorsata. In Zhao E. M., Huang M. H., Zong Y. (Eds.) Fauna sinica, Reptilia (Squamata: Serpentes), Vol 3. Science Press, Beijing, China, 163–166 (In Chinese)


Last Update: 2020-12-25