Yue QI,Li DING,Yangyang ZHAO,et al.Toad-headed Lizard Phrynocephalus forsythii (Squamata, Agamidae) as a Potential Ring Species Inferred from Population Genetic Differentiation[J].Asian Herpetological Research(AHR),2020,11(4):312-319.[doi:10.16373/j.cnki.ahr.200001]
Click Copy

Toad-headed Lizard Phrynocephalus forsythii (Squamata, Agamidae) as a Potential Ring Species Inferred from Population Genetic Differentiation
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

2020 VoI.11 No.4
Research Field:
Publishing date:


Toad-headed Lizard Phrynocephalus forsythii (Squamata, Agamidae) as a Potential Ring Species Inferred from Population Genetic Differentiation
Yue QI# Li DING# Yangyang ZHAO Chenkai NIU Xiaoning WANG and Wei ZHAO*
Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
continuous variation gene flow Phrynocephalus forsythii ring species Tarim Basin
Speciation has never been directly observed in nature because it is a lengthy phenomenon. Although rare, ring species are an optimal natural example of speciation and can be identified through the assessment of the geographical conditions of their potential habitat. Phrynocephalus forsythii is endemic to the Tarim Basin, which comprises the Taklamakan Desert and surrounded by mountains on three sides. This study aimed to determine whether P. forsythii had a ring-species-like divergence pattern through the characterization of the genetic features of 17 populations covering the major distribution of this species. Species distribution modelling revealed that P. forsythii had a continuous circular distribution around the Tarim Basin. Gene flow was observed in most adjacent populations except for two terminal populations of the ring, which exhibit the highest differentiation. Genetic distance and geographic distance were significantly correlated, indicating that the observed differentiation resulted from genetic variation gradually accumulating during population dispersion. Although our results do not definitively indicate that P. forsythii is a ring species, our results indicate a ring-shaped diversification. This phenomenon elucidates the potential mechanism underlying speciation in the presence of gene flow, providing insight into this evolutionary process.


Adler K., Zhao E. M. 1993. Society for the study of amphibians and reptiles. Amphibia-Reptilia, 16: 423–424
Alcaide M., Scordato E. S. C., Price T. D., Irwin D. E. 2014. Genomic divergence in a ring species complex. Nature, 511: 83–85
Ayala F. J., Fitch W. M. 1997. Genetics and the origin of species: An introduction. P Nat Acad Sci, 94: 7691–7697
Beerli P. 1997. Migrate 0.7: ation and program, part of LAMARC. http://evolution.genetics.washington
Beerli P., Felsenstein J. 1999. Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. Genetics, 152: 763–773
Cacho N. I., Baum D. A. 2012. The Caribbean slipper spurge Euphorbia tithymaloides: The first example of a ring species in plants. P Roy Soc B: Biol Sci, 279: 3377–3383
Dieckmann U., Doebeli M. 1999. On the origin of species by sympatric speciation. Nature, 400: 354–357
Doebeli M., Dieckmann U. 2003. Speciation along environmental gradients. Nature, 421: 259–264
Dufresnes C., Litvinchuk S. N., Leuenberger J., Chali K., Zinenko O. 2016. Evolutionary melting pots: A biodiversity hotspot shaped by ring diversifications around the Black Sea in the Eastern tree frog (Hyla orientalis). Mol Ecol, 25: 4285–4300
Elith J., Phillips S. J., Hastie T., Dudík M., Chee Y. E. 2011. A statistical explanation of MaxEnt for ecologists. Divers Distrib, 17: 43–57
Fuchs J., Ericson P. G., Bonillo C., Couloux A., Pasquet E. 2015. The complex phylogeography of the Indo-Malayan Alophoixus bulbuls with the description of a putative new ring species complex. Mol Ecol, 24: 5460–5474
Excoffier L., Laval G., Schneider S. 2005. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol Bioinform Online, 1: 47–50
Gavrilets S., Hai L., Vose M. D. 1998. Rapid parapatric speciation on holey adaptive landscapes. P Roy Soc, 265: 1483–1489
Hall T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acid Symp Ser, 41: 95–98
Hey J., Fitch W. M., Ayala F. J. 2005. Systematics and the origin of species. P Nat Acad Sci, 102: 6515–6519
Hey J. 2010a. The divergence of chimpanzee species and subspecies as revealed in multipopulation isolation-with-migration analyses. Mol Biol Evol, 27: 921–933
Hey J. 2010b. Isolation with migration models for more than two populations. Mol Biol Evol, 27: 905–920
Hijmans R. J., Cameron S. E., Parra J. L., Jones P. G., Jarvis A. 2005. Very high-resolution interpolated climate surfaces for global land areas. Inter J Clim, 25: 1965–1978
Huelsenbeck J. P., Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17: 754–755
Irwin D. E., Bensch S., Price T. D., 2001. Speciation in a ring. Nature, 409: 333–337
Irwin D. E., Irwin J. H., Price T. D. 2001. Ring species as bridges between microevolution and speciation. Genetica, 112: 223–243
Irwin D. E. 2005. Speciation by distance in a ring species. Science, 307: 414–416
Irwin D. E. 2012. A novel approach for finding ring species: Look for barriers rather than rings. BMC Biology, 10: 21
Irwin D. E., Wake D. B. 2016. Ring species. Encycl Evol Biol, 3: 467–475
Joseph L., Dolman G., Donnellan S., Saint K. M., Berg M. L. 2008. Where and when does a ring start and end? Testing the ring-species hypothesis in a species complex of Australian parrots. P Roy Soc, 275: 2431–2440
Kuchta R., Wake D. B. 2016. Wherefore and whither the ring species? Copeia, 104: 189–201
Li H., Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25: 1754–1760
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J. 2009. The sequence alignment/map format and SAMtools. Bioinformatics, 25: 2078–2079
Liu J. Q., Qin X. G. 2005. Evolution of the environmental framework and oasis in the Tarim Basin. Quat Sci, 25: 533–539
Mayr E. 1942. Systematics and the origin of species. P Nat Acad Sci, 102: 6515–6519
Muscarella R., Galante P. J., Soley-Guardia M., Boria R. A., Kass J. M. 2014. ENM: An R package for conducting spatially independent uations and estimating optimal model complexity for MAXENT ecological niche models. Methods Ecol Evol, 5: 1198–1205
Nielsen R., Wakeley J. 2001. Distinguishing migration from isolation: A Markov chain Monte Carlo approach. Genetics, 158: 885–896
Niemiller M. L., Fitzpatrick B. M., Miller B. T. 2008. Recent divergence-with-gene-flow in Tennessee cave salamanders (Plethodontidae: Gyrinophilus) inferred from gene genealogies. Mol Ecol, 17: 2258–2275
Nosil P. 2008. Speciation with gene flow could be common. Mol Ecol, 17: 2103–2106
Nylander J. A. A. 2004. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.
Pereira R. J., Monahan W. B., Wake D. B. 2011. Predictors for reproductive isolation in a ring species complex following genetic and ecological divergence. BMC Evol Biol, 11: 1–15
Pereira R. J., Wake D. B. 2015. Ring species as demonstrations of the continuum of species formation. Mol Ecol, 24: 5312–5314
Pickrell J. K., Pritchard J. K. 2012. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet, 8: e1002967
Phillips S. J., Anderson R. P., Schapire R. E. 2006. Maximum entropy modeling of species geographic distributions. Ecol Mod, 190: 231–259
Qi Y., Zhao W., Huang Y. J., Wang X. N., Zhao Y. Y. 2019. Correlation between climatic factors and genetic diversity of Phrynocephalus forsythii. Asian Herpetol Res, 10(4): 270–275
Qiao L., Wen G. N., Qi Y., Lu B., Hu J. H., Song Z. B., Fu J. Z. 2018. Evolutionary melting pots and reproductive isolation: A ring-shaped diversification of an odorous frog (Odorrana margaratea) around the Sichuan Basin. Mol Ecol, 27: 4888–4900
Synes N. W., Osborne P. E. 2011. Choice of predictor variables as a source of uncertainty in continental-scale species distribution modeling under climate change. Glob Ecol Biogeogr, 20: 904–914
Schluter D. 2001. Ecology and the origin of species. Trends Ecol Evol, 16: 372–380
Sun J. M., Liu T. S. 2006. The age of the Taklimakan Desert. Science, 312: 1621–1621
Sun J. M., Liu W. G., Liu Z. H., Deng T., Windley B. F. 2017. Extreme aridification since the beginning of the Pliocene in the Tarim Basin, western China. Palaeogeogr Palaeoclimatol Palaeoecol, 485: 189–200
Sinervo B., Miles D. B., Wu Y. Y., Kirchoff S., Fausto R. 2018. Climate change, thermal niches, extinction risk and maternal-effect rescue of toad-headed lizards, Phrynocephalus, in thermal extremes of the Arabian Peninsula to the Tibetan Plateau. Integrat Zool, 13: 450–470
Slatkin M. 1993. Isolation by distance in equilibrium and non-equilibrium populations. Evolution, 47: 264–279
Team C. R. 2017. R: A language and environment for statistical computing. Vienna, Austria. https://www.R-project.org/
Vaidya G., Lohman D. J., Meier R. 2011. SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics, 27: 171–180
Wang M. S., Li Y., Peng M. S., Zhong L., Wang Z. J. 2015. Genomic analyses reveal potential independent adaptation to high altitude in Tibetan chickens. Mole Biol Evol, 7: 1880–1889
Zhang Q., Xia L., He J. B., Wu Y. H., Fu J. Z. 2010. Comparison of phylogeographic structure and population history of two Phrynocephalus species in the Tarim Basin and adjacent areas. Mol Phylogenet Evol, 57: 1091–1104
Zheng H., Jia J. T., Wang K. 2009. Cenozoic sediments in the southern Tarim Basin: Implications for the uplift of northern Tibet and evolution of the Taklimakan Desert. Earth Sci Front, 22: 321–31
Zhu H., Zheng Z., Huang D., Song D., Feng Z. 1999. Fauna Sinica Vol. 2, Reptilia: Squamata, Science Press, Beijing, China (In Chinese)


Last Update: 2020-12-25