Rasoul KARAMIANI,Nasrullah RASTEGAR-POUYANI and Eskandar RASTEGAR-POUYANI.Modeling the Past and Current Distribution and Habitat Suitability for Ablepharus grayanus and A. pannonicus (Sauria: Scincidae)[J].Asian Herpetological Research(AHR),2018,9(1):56-64.[doi:10.16373/j.cnki.ahr.170043]
Click Copy

Modeling the Past and Current Distribution and Habitat Suitability for Ablepharus grayanus and A. pannonicus (Sauria: Scincidae)
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

2018 VoI.9 No.1
Research Field:
Publishing date:


Modeling the Past and Current Distribution and Habitat Suitability for Ablepharus grayanus and A. pannonicus (Sauria: Scincidae)
1 Department of Biology, Faculty of Science, Razi University, Kermanshah 67149, Iran
2 Department of Biology, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
climate condition suitable habitat potential distribution mid-Holocene Last Interglacial
Study of the climate variability in the past and present, and correlating those with changes in the distribution range of species has attracted considerable research interest. The genus Ablepharus consists of 10 recognized species, of which A. bivittatus, A. grayanus and A. pannonicus are documented from Iran. In the present study, we modeled with MaxEnt the potential distribution areas and determined the suitable habitats in past (mid-Holocene [MH], and the Last Interglacial [LIG]) and their current distribution for two species of snake-eyed skinks (A. grayanus and A. pannonicus) separately. Models of the species indicated good fit by the average high area under the curve (AUC) values (A. grayanus = 0.929 ± 0.087 and A. pannonicus = 0.979 ± 0.007). Precipitation of the driest quarter of the year, mean temperature of the coldest quarter of the year, and precipitation of the driest month variables made important contributions to A. grayanus. Two important climate variables contributed importantly to A. pannonicus; temperature seasonality, and mean temperature of the wettest quarter of the year, and one topographic variable, slope. We conclude that these variables form a natural barrier for species dispersal. The MH and the LGM models indicated a larger suitable area than the current distribution.


Ananjeva N. B., Golynsky E. A., Hosseinian Y. S. S., Masroor R. 2014. Distribution and environmental suitability of the smallscaled rock agama, Paralaudakia microlepis (Sauria: Agamidae) in the Iranian Plateau. Asian Herpetol Res, 5(3): 161–167
Anderson S. C. 1999. The Lizards of Iran. Society for the study of Amphibians and Reptiles, Oxford, Ohio, 442 pp
Barabanov A. V., Litvinchuk S. N. 2015. A new record of the Kurdistan newt (Neurergus derjugini) in Iran and potential distribution modeling for the species. Rus J Herpetol, 22(2): 107–115
Davis M. B., Shaw R. G., Etterson J. R. 2005. Evolutionary responses to changing climate. Ecology, 86(7): 1704–1714
de Souza Mu?oz M. E., De Giovanni R., de Siqueira M. F., Sutton T., Brewer P., Pereira R. S., Canhos D. A. L., Canhos V. P. 2011. OpenModeller: A generic approach to species’ potential distribution modelling. GeoInformatica, 15(1): 111–135
Elith J., Graham C. H., Anderson R. P., Dud?k M., Ferrier S., Guisan A., Hijmans R. J., Huettmann F., Leathwick J. R., Lehmann A., Li J., Lohmann L. G., Loiselle B. A., Manion G., Moritz C., Nakamura M., Nakazawa Y., Overton J. M., Peterson A. T., Phillips S. J., Richardson K. S., Scachetti- Pereira R., Schapire R. E., Soberon J., Williams S., Wisz M. S., Zimmermann N. E. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2): 129–151
Fühn I. 1969a. Revision and redefinition of the genus Ablepharus Lichtenstein, 1823 (Reptilia, Scincidae). Rev Roum Biol Zool, 14: 23–41
Fühn I. 1969b. The “Polyphyletic” origin of the genus Ablepharus (Reptilia, Scincidae): a case of parallel evolution. J Zool Syst Evol Res, 7(1): 67–76
Gallien L., Douzet R., Pratte S., Zimmermann N. E., Thuiller W. 2012. Invasive species distribution models–how violating the equilibrium assumption can create new insights. Glob Ecol Biogeogr, 21(11): 1126–1136
Gardner A. 2009. Mapping the terrestrial reptile distributions in Oman and the United Arab Emirates. ZooKeys, 31: 165
Graham C. H., Ferrier S., Huettman F., Moritz C., Peterson A. T. 2004. New developments in museum-based informatics and applications in biodiversity analysis. Trend Ecol Evol, 19(9): 497–503
Hernandez P. A., Graham C. H., Master L. L., Albert D. L. 2006. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29(5): 773–785
Hijmans R. J., Cameron S. E., Parra J. L., Jones P. G., Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol, 25(15): 1965–1978
Hijmans R., Cruz M., Rojas E., Guarino L. 2001. DIVA-GIS, version 1.4. A geographic information system for the management and analysis of genetic resources data. Plant Genet Resour Newsl, 127: 15–19
Kaliontzopoulou A., Brito J., Carretero M., Larbes S., Harris D. 2008. Modelling the partially unknown distribution of wall lizards (Podarcis) in North Africa: ecological affinities, potential areas of occurrence, and methodological constraints. Can J Zool, 86(9): 992–1001
Karamiani R., Rastegar-Pouyani N., Rastegar-Pouyani E., Akbarpour M., Damadi E. 2015. Verification of the Minor Snake-eyed Skink, Ablepharus grayanus (Stoliczka, 1872) (Sauria: Scincidae), from Iran. Zool Middle East, 61(3): 226–230
Kerwin M. W., Overpeck J. T., Webb R. S., DeVernal A., Rind D. H., Healy R. J. 1999. The role of oceanic forcing in mid-Holocene northern hemisphere climatic change. Paleoceanography, 14(2): 200–210
Khan M. S. 1999. Herpetology of habitat types of Pakistan. Pak J Zool, 31(3): 275–289
Khan M. S. 2002. Key and checklist to the lizards of Pakistan. Herpetozoa, 15(3/4): 99–119
Khan M. S. 2012. Herpetological Laboratory. In SERIES F. G., Pakistan J. (Eds.), Zool Suppl Ser, 11: 1–12
Kleidon A., Mooney H. A. 2000. A global distribution of biodiversity inferred from climatic constraints: results from a process-based modelling study. Glob Chan Biol, 6(5): 507–523
Leviton A. E. 1959. Report on a collection of reptiles from Afghanistan. Proc California Acad Sci, 29: 445–463
Manel S., Williams H. C., Ormerod S. J. 2001. Evaluating presence-absence models in ecology: The need to account for prevalence. J Appl Ecol, 38(5): 921–931
Nikolova I., Yin Q., Berger A., Singh U. K., Karami M. 2013. The last interglacial (Eemian) climate simulated by LOVECLIM and CCSM3. Clim Past, 9(4): 1789–1806
Otto-Bliesner B. L., Marshall S. J., Overpeck J. T., Miller G. H., Hu A. 2006. Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science, 311(5768): 1751–1753
Pearson R. G., Raxworthy C. J., Nakamura M., Townsend Peterson A. 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr, 34(1): 102–117
Phillips S. J., Anderson R. P., Schapire R. E. 2006. Maximum entropy modeling of species geographic distributions. Ecol Model, 190(3): 231–259
Phillips S. J., Dud?k M., Elith J., Graham C. H., Lehmann A., Leathwick J., Ferrier S. 2009. Sample selection bias and presence–only distribution models: Implications for background and pseudo-absence data. Ecol Appl, 19(1): 181–197
Phillips S. J., Dud?k M., Schapire R. E. 2004. A maximum entropy approach to species distribution modeling. Proceedings of the twenty-first international conference on Machine learning.?83pp
Pickarski N. 2014. Vegetation and climate history during the last glacial-interglacial cycle at Lake Van, eastern Anatolia. Thesis. Universit?ts-und Landesbibliothek Bonn.
Pyron R. A., Burbrink F. T., Wiens J. J. 2013. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol Biol, 13(1): 1
Raes N., ter Steege H. 2007. A null-model for significance testing of presence–only species distribution models. Ecography, 30(5): 727–736
Ramirez-Villegas J., Cuesta F., Devenish C., Peralvo M., Jarvis A., Arnillas C. A. 2014. Using species distributions models for designing conservation strategies of Tropical Andean biodiversity under climate change. J Nat Cons, 22(5): 391–404
Ray L. L. 1992. The Great Ice Age. US Department of the Interior, US Geological Survey
Sillero N., Carretero M. A. 2013. Modelling the past and future distribution of contracting species. The Iberian lizard Podarcis carbonelli (Squamata: Lacertidae) as a case study. Zoologischer Anzeiger–J Comp Zool, 252(3): 289–298
Texier D., De Noblet N., Braconnot P. 2000. Sensitivity of the African and Asian monsoons to mid-Holocene insolation and data-inferred surface changes. J Clim, 13(1): 164–181
Thomas C. D., Cameron A., Green R. E., Bakkenes M., Beaumont L. J., Collingham Y. C., Erasmus B. F., De Siqueira M. F., Grainger A., Hannah L. 2004. Extinction risk from climate change. Nature, 427(6970): 145–148
Uetz P., Ho?ek J. 2016. The Reptile Database. http://www. reptile-database. org
Vyas R. 2011. Preliminary Survey on Reptiles of Jassore Wildlife Sanctuary, Gujarat State, India. Russ J Herpetol, 18(3): 210–214
Wanner H., Beer J., Bütikofer J., Crowley T. J., Cubasch U., Flückiger J., Goosse H., Grosjean M., Joos F., Kaplan J. O. 2008. Mid-to Late Holocene climate change: An overview. Quat Sci Rev, 27(19): 1791–1828
Yousefkhani S. S. H., Ficetola G. F., Rastegar-Pouyani N., Ananjeva N. B., Rastegar-Pouyani E., Masroor R. 2013. Environmental suitability and distribution of the Caucasian Rock Agama, Paralaudakia caucasia (Sauria: Agamidae) in western and central Asia. Asian Herpetol Res, 4(3): 207–213
Yousefkhani S. S. H., Tehrani S. J., Moodi B., Gül S. 2016. Distribution patterns and habitat suitability for three species of the genus Hyla Laurenti, 1768 in the Western Palearctic. Turk J Zool, 40(2): 257–261


Last Update: 2018-03-27