Wen SHEN,Jianchi PEI,Longhui LIN and Xiang JI.Effects of Constant versus Fluctuating Incubation Temperatures on Hatching Success, Incubation Length, and Hatchling Morphology in the Chinese Skink (Plestiodon chinensis)[J].Asian Herpetological Research(AHR),2017,8(4):262-268.[doi:10.16373/j.cnki.ahr.170029]
Click Copy

Effects of Constant versus Fluctuating Incubation Temperatures on Hatching Success, Incubation Length, and Hatchling Morphology in the Chinese Skink (Plestiodon chinensis)
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

Issue:
2017 VoI.8 No.4
Page:
262-268
Research Field:
Publishing date:
2017-12-25

Info

Title:
Effects of Constant versus Fluctuating Incubation Temperatures on Hatching Success, Incubation Length, and Hatchling Morphology in the Chinese Skink (Plestiodon chinensis)
Author(s):
Wen SHEN1 Jianchi PEI2 Longhui LIN3* and Xiang JI2
1 School of Sports and Health, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
2 Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
3 School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
Keywords:
Developmental plasticity egg incubation hatchling phenotype scincid lizard thermal variance thermal mean
PACS:
-
DOI:
10.16373/j.cnki.ahr.170029
Abstract:
We incubated eggs of Plestiodon chinensis under five constant (24, 26, 28, 30, and 32 °C) and one fluctuating thermal regimes to examine the effects of constant versus fluctuating incubation temperatures on hatching success, incubation length, and hatchling morphology. The duration of incubation varied considerably among the six temperature treatments, whereas hatching success did not. The mean incubation length decreased as temperature increased in a nonlinear way, and increased as the thermal variance increased. Incubation temperature affected the body size (linear length and mass) and shape of hatchlings, with eggs incubated at 26, 28, and 30 °C producing larger and heavier hatchlings than did those incubated at 24 °C, 32 °C, or fluctuating temperatures. Our results showed that exposure of P. chinensis eggs to extreme temperatures for brief periods of time did not increase embryonic mortality and, in the fluctuating-temperature treatment, the thermal variance affected hatchling morphology more evidently than the thermal mean. Our results highlight the importance of the thermal variance in affecting embryonic development and hatchling morphology, and add further evidence that temperatures within the range of 26?30 °C are optimal for P. chinensis embryos.

References:

Ackerman R. A., Lott D. B. 2004. Thermal, hydric and respiratory climate of nests. In Deeming D. C. (Ed.), Reptilian Incubation: Environment, Evolution, and Behavior. Nottingham: Nottingham University Press, 15–43
Amiel J. J., Lindstr?m T., Shine R. 2014. Egg incubation effects generate positive correlations between size, speed and learning ability in young lizards. Anim Cogn, 17: 337?347
Andrewartha S. J., Mitchell N. J., Frappell P. B. 2010. Does incubation temperature fluctuation influence hatchling phenotypes in reptiles? A test using parthenogenetic geckos. Physiol Biochem Zool, 83: 597?607
Andrews R. M., Mathies T., Warner D. A. 2000. Effect of incubation temperature on morphology, growth, and survival of juvenile Sceloporus undulatus. Herpetol Monogr, 14: 420–431
Ashmore G. M., Janzen F. J. 2003. Phenotypic variation in smooth softshell turtles (Apalone mutica) from eggs incubated in constant versus fluctuating temperatures. Oecologia, 134: 182–188
Birchard G. F. 2004. Effects of incubation temperature. In Deeming D. C. (Ed.), Reptilian Incubation: Environment, Evolution, and Behavior. Nottingham: Nottingham University Press, 103–123
Booth D. T. 2006. Influence of incubation temperature on hatchling phenotype in reptiles. Physiol Biochem Zool, 79: 274–281
Cagle K. D., Packard G. C., Miller K., Packard M. J. 1993. Effects of the microclimate in natural nests on development of embryonic painted turtles, Chrysemys ptcta. Funct Ecol, 7: 653?660
Charruau P. 2012. Microclimate of American crocodile nests in Banco Chinchorro biosphere reserve, Mexico: effect on incubation length, embryos survival and hatchlings sex. J Thermal Biol, 37: 6?14.
Chen H. L., Ji X. 2002. The effects of thermal environments on duration of incubation, hatching success and hatchling traits in a colubrid snake Rhabdophis tigrinus lateralis (Boie). Acta Ecol Sin, 22: 1850–1858
Deeming D. C. 2004. Post-hatching phenotypic effects of incubation in reptiles. In Deeming D. C. (Ed.), Reptilian Incubation: Environment, Evolution, and Behavior. Nottingham: Nottingham University Press, 229–251
Du W. G., Hu L. J., Lu J. L., Zhu L. J. 2007. Effects of incubation temperature on embryonic development rate, sex ratio and post-hatching growth in the Chinese three-keeled pond turtle, Chinemys reevesii. Aquaculture, 272: 747–753
Du W. G., Wang L., Shen J. W. 2010. Optimal temperatures for egg incubation in two geoemydid turtles: Ocadia sinensis and Mauremys mutica. Aquaculture, 305: 138–142
Du W. G., Ji X. 2003. The effects of incubation thermal environments on size, locomotor performance and early growth of hatchling soft-shelled turtles, Pelodiscus sinensis. J Therm Biol, 28: 279?286
Du W. G., Ji X. 2006. Effects of constant and fluctuating temperatures on egg survival and hatchling traits in the northern grass lizard (Takydromus septentrionalis, Lacertidae). J Exp Zool A, 305: 47?54
Du W. G., Shen J. W., Wang L. 2009. Embryonic development rate and hatchling phenotypes in the Chinese three-keeled pond turtle (Chinemys reevesii): the influence of fluctuating temperature versus constant temperature. J Therm Biol, 34: 250–255
Du W. G., Shine R. 2010. Why do the eggs of lizards (Bassiana duperreyi: Scincidae) hatch sooner if incubated at fluctuating rather than constant temperatures? Biol J Linn Soc, 101: 642–650
Du W. G., Shine R. 2015. The behavioural and physiological strategies of bird and reptile embryos in response to unpredictable variation in nest temperature. Biol Rev, 90: 19?30
Du W. G., Shou L., Shen J. Y., Lu Y. W. 2005. Influence of fluctuating incubation temperatures on hatchling traits in a Chinese skink, Eumeces chinensis. Herpetol J, 15: 139–142
Dufaure J. P., Hubert J. 1961. Table de développement du lézard vivipare: Lacerta (Zootoca) vivipara Jacquin. Arch Anat Microsc Morphol Exp, 50: 309–328
Gao J. F., Qu Y. F., Luo L. G., Ji X. 2010. Evolution of reptilian viviparity: a test of the maternal manipulation hypothesis in a temperate snake, Gloydius brevicaudus (Viperidae). Zool Sci, 27: 248–255
Hao Q. L., Liu H. X., Ji X. 2006. Phenotypic variation in hatchling Mongolian racerunners (Eremias argus) from eggs incubated at constant versus fluctuating temperatures. Acta Ecol Sin, 52: 1049–1057
Ji X., Bra?a F. 1999. The influence of thermal and hydric environments on incubating eggs and embryonic use of energy and nutrients in the wall lizard Podarcis muralis. Comp Biochem Physiol A, 124: 205?213
Ji X., Chen F., Du W. G., Chen H. L. 2003. Incubation temperature affects hatchling growth but not sexual phenotype in the Chinese soft-shelled turtle Pelodiscus sinensis. J Zool, 261: 409–416
Ji X., Du W. G., Xu X. F. 2001. Influence of thermal and hydric environments on incubating eggs and resultant hatchlings in a colubrid snake (Xenochrophis piscator). Acta Zool Sin, 47: 45?52
Ji X., Gao J. F., Han J. 2007a. Phenotypic responses of hatchling multi-banded kraits (Bungarus multicintus) to constant versus fluctuating incubation temperatures. Zool Sci, 24: 384?390
Ji X., Huang H. Y., Hu X. Z., Du W. G. 2002. Geographic variation in reproductive characteristics and egg incubation of Eumeces chinensis. Chin J Appl Ecol, 13: 680?684
Ji X., Lin C. X., Lin L. H., Qiu Q. B., Du Y. 2007b. Evolution of viviparity in warm-climate lizards: an experimental test of the maternal manipulation hypothesis. J Evol Biol, 20: 1037?1045
Ji X., Zhang C. H. 2001. Effects of thermal and hydric environments on incubating eggs, hatching success, and hatchling traits in the Chinese skink (Eumeces chinensis). Acta Zool Sin, 47: 250?259
Les H. L., Paitz R. T., Bowden R. M. 2007. Experimental test of the effects of fluctuating incubation temperatures on hatchling phenotype. J Exp Zool A, 307: 274–280
Les H. L., Paitz R. T., Bowden R. M. 2009. Living at extremes: development at edges of of viable temperature under constant and fluctuating conditions. Physiol Biochem Zool, 307: 274–280
Li H., Ding G. H., Zhou Z. S., Ji X., 2013a. Fluctuations in incubation temperature affect incubation duration but not morphology, locomotion and growth of hatchlings in the sand lizard Lacerta agilis (Lacertidae). Acta Zool, 94: 11?18
Li H., Wang Z., Chen C., Ji X. 2012. Does the variance of incubation temperatures always constitute a selective force for the origin of reptilian viviparity? Curr Zool, 58: 812?819
Li H., Zhou Z. S., Wu T., Wu Y. Q., Ji X. 2013b. Do fluctuations in incubation temperature affect hatchling quality in the Chinese soft-shelled turtle Pelodiscus sinensis? Aquaculture, 406/407: 91?96
Lin C. X., Du Y., Qiu Q. B., Ji X. 2007. Relatively high but narrow incubation temperatures in lizards depositing eggs in warm and thermally stable nests. Acta Zool Sin, 53: 437–445
Lin L. H., Li H., An H., Ji X. 2008. Do temperature fluctuations during incubation always play an important role in shaping the phenotype of hatchling reptiles? J Therm Biol, 33: 193–199
Lin Z. H., Ji X. 2000. Food habits, sexual dimorphism and female reproduction of the skink (Eumeces chinensis) from a Lishui population in Zhejiang. Acta Ecol Sin, 20: 304?310
Lin Z. H., Ji X. 2004. Reproductive output and effects of incubation thermal environments on hatchling phenotypes of mucous rat snakes Ptyas mucosus. Acta Zool Sin, 50: 541–550
L?wenborg K., Gotthard K., Hagman M. 2012. How a thermal dichotomy in nesting environments influences offspring of the world’s most northerly oviparous snake, Natrix natrix (Colubridae). Biol J Linn Soc, 107: 833–844
Lu H. L., Hu R. B., Ji X. 2009. The variance of incubation temperatures is not important in influencing the phenotype of hatchlings in an aquatic snake, Xenochrophis piscator (Colubridae). J Therm Biol, 34: 138–143
Lu H. L., Gao J. F., Ma X. H., Lin Z. H., Ji X. 2012. Tail loss affects fecundity but not offspring traits in the Chinese skink, Eumeces chinensis. Curr Zool, 58: 228?235
Lu H. L., Lin Z. H., Li H., Ji X. 2014. Geographic variation in hatchling size in an oviparous skink: effects of maternal investment and incubation thermal environment. Biol J Linn Soc, 113: 283–296
Neuwald J. L., Valenzuela N. 2011. The lesser known challenge of climate change: thermal variance and sex-reversal in vertebrates with temperature-dependent sex determination. PLoS One, 6: e18117
Overall K. L. 1994. Lizard egg environments. In Vitt L. J., Pianka E. R. (Eds.), Lizard Ecology: Historical and Experimental Perspectives. Princeton: Princeton University Press, 51–72.
Paitz R. T., Clairardin S. G., Griffin A. M., Holgersson M. C. N., Bowden R. M. 2010. Temperature fluctuations affect offspring sex but not morphological, behavioral, or immunological traits in the northern painted turtle (Chrysemys picta). Can J Zool, 88: 479–486
Patterson L. D., Blouin-Demers G. 2008. The effect of constant and fluctuating incubation temperatures on the phenotype of black ratsnakes (Elaphe obsoleta). Can J Zool, 86: 882–889
Pi?a C. I., Larriera A., Cabrera M. R. 2003. Effect of Incubation Temperature on Incubation Period, Sex Ratio, Hatching Success, and Survivorship in Caiman latirostris (Crocodylia, Alligatoridae). J Herpetol, 37: 199–202
Qu Y. F., Lu H. L., Li H., Ji X. 2014. Incubation temperature fluctuation does not affect incubation length and hatchling phenotype in the Chinese skink Plestiodon chinensis. J Therm Biol, 46: 10–15
Refsnider J. M. 2013. High thermal variance in naturally incubated turtle nests produces faster offspring. J Ethol, 31: 85–93
Valenzuela N. 2004. Temperature-dependent sex determination. In Deeming D. C. (Ed.), Reptilian Incubation: Environment, Evolution, and Behavior. Nottingham: Nottingham University Press, 211–227.
Wang Z., Lu H. L., Ma L., Ji X. 2014. Viviparity in high-altitude Phrynocephalus lizards is adaptive because embryos cannot fully develop without maternal thermoregulation. Oecologia, 174: 639?649
Warner D. A., Shine R. 2011. Interactions among thermal parameters determine offspring sex under temperature-dependent sex determination. Proc R Soc B, 278: 256–265

Memo

Memo:
-
Last Update: 2017-12-25