Shengnan JI,Xue LIAN,Zhigang JIANG,et al.Effects of Sand Grain Size on Habitat Selection in Steppe Toad-headed Lizard (Phrynocephalus frontalis )[J].Asian Herpetological Reserch(AHR),2017,8(2):123-130.[doi:10.16373/j.cnki.ahr.160014]
Click Copy

Effects of Sand Grain Size on Habitat Selection in Steppe Toad-headed Lizard (Phrynocephalus frontalis )
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

2017 VoI.8 No.2
Research Field:
Publishing date:


Effects of Sand Grain Size on Habitat Selection in Steppe Toad-headed Lizard (Phrynocephalus frontalis )
Shengnan JI1 Xue LIAN2 Zhigang JIANG13 Lili LI1 Junhuai BI2* and Chunwang LI13*
1 Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
2 College of Life Science, Inner Mongolia Normal University, Hohhot 010022, China
3 College of Life Science, University of Chinese Academy of Sciences, Beijing 101408, China
habitat preference agama lizard sand substrate desert grassland
To understand the effects of sand grain size on habitat selection, we conducted a field study on the steppe toad-headed lizard in Hunshandake Desert northern China. Methods of mark-recapture and transect survey were used to investigate the density of steppe toad-headed lizards and the environmental variables. The comparison on lizard densities among the habitats with different environmental factors revealed that: 1) population density of the steppe toad-headed lizard differed significantly among the habitats with different sand grain size indexes (SGSIs, representing roughness of sand substrate): the highest lizard density was found in the group with an SGSI of > 0.30, whereas the lowest density was found in the group with an SGSI of 0–0.15; and 2) vegetation cover, soil moisture, invertebrate diversity index, and abundance had no significant effects on the lizard density. These results implied that the sand grain size was the most important determinant of habitat selection for steppe toad-headed lizards in Hunshandake Desert. Steppe toad-headed lizards could avoid structural habitats that have negative effects on their maximal sprinting capabilities. Considering the changing sand grain size in the development phase of sand dunes, the sand lizard could be used as an indicator of the process of desertification.


Attum O. A., Eason P. K. 2006. Effects of vegetation loss on a sand dune lizard.?J Wildllife Manage,?70(1): 27–30
Beest F. M., McLoughlin P. D., Mysterud A., Brook R. K. 2015. Functional responses in habitat selection are density dependent in a large herbivore. Ecography, 38: 1–9
Bird R. B., Tayor N., Codding B. F., Bird D. W. 2013. Niche construction and Dreaming logic: aboriginal patch mosaic burning and varanid lizards (Varanus gouldii) in Australia. P Roy Soc Lond B Bio, 280: 22–97
Brown G., Shine R. 2005. Do changing moisture levels during incubation influence phenotypic traits of hatchling snakes (Tropidonophis mairii, Colubridae)? Physiol Biochem Zool, 78: 524–530
Chi H., Zhou G., Xu Z., Yuan W. 2007. Measuring coverage of grassland vegetation using remote sensing over short distances. Acta Pratac Sinica, 16(2): 105–110
Civantos E., Thuiller W., Maiorano L., Guisan A., Araújo M. B. 2012. Potential impacts of climate change on ecosystem services in Europe: the case of pest control by vertebrates. BioSci, 62(7): 658–666
Cosentino B. J., Schooley R. L., Bestelmeyer B. T., Coffman J. M. 2013. Response of lizard community structure to desert grassland restoration mediated by a keystone rodent. Biodivers Conserv, 22(4): 921–935
D’Cruze N., Kumar S. 2011. Effects of anthropogenic activities on lizard communities in northern Madagascar. Anim Conserv, 14(5): 542–552
Díaz J. A., Monasterio C., Salvador A. 2006. Abundance, microhabitat selection and conservation of eyed lizards (Lacerta lepida): a radio telemetric study.?J Zool,?268(3): 295–301
Doligez B., Danchin E., Clobert J. 2002. Public information and breeding habitat selection in a wild bird population. Science, 297(5584): 1168–1170
Downes S., Shine R. 1998. Heat, safety or solitude? Using habitat selection experiments to identify a lizard’s priorities. Anim Behav, 55(5): 1387–1396
Gordon C. E., Dickman C. R., Thompson M. B. 2010. Partitioning of temporal activity among desert lizards in relation to prey availability and temperature.?Austral Ecol,?35(1): 41–52
Hinsley S. A. 2000. The costs of multiple patch use by birds. Landscape Ecol, 15(8): 765–775
Huey R. B. 1991. Physiological consequences of habitat selection. Am Nat, 137(Suppl.): 91–115
Irschick D. J., Jayne B. C. 1998. Effects of incline on speed, acceleration body posture and hindlimb kinematics in two species of lizard Callisaurus draconoides and Uma scoparia. J Exp Biol, 201: 273–287
Irschick D. J., Losos J. B. 1999. Do lizards avoid habitats in which performance is submaximal? The relationship between sprinting capabilities and structural habitat use in Caribbean anoles.?Am Nat,?154(3): 293–305
Kacoliris F. P., Berkunsky I., Williams J. D. 2009. Methods for assessing population size in sand dune lizards (Liolaemus multimaculatus). Herpetologica, 65(2): 219–226
Korff W. L., McHenry M. J. 2011. Environmental differences in substrate mechanics do not affect sprinting performance in sand lizards (Uma scoparia and Callisaurus draconoides). J Exp Biol, 214(1): 122–130
Krebs C. J. 1999. Ecological methodology. Menlo Park, California, USA
Li C., Lian X., Bi J., Maul T. L., Jiang Z. 2011. Effects of sand grain size and morphological traits on running speed of toad-headed lizard Phrynocephalus frontalis. J Arid Environ, 75(11): 1038–1042
Li C., Lian X., Tang S., Bi J., Jiang Z. 2013. Diet, food intake of Phrynocephalus frontalis (Agamidae) and its potential role in desert habitat. Asian Herpetol Res, 4(4): 248–253
Lian X. 2011. Spatio-temporal distribution and habitat use of steppe toad-headed lizard (Phrynocephalus frontalis) and its role in pest control. Master Thesis. Inner Mongolia Normal University, Huhhot, China (In Chinese)
Lian X., Jiang Z., Ping X., Tang S., Bi J., Li C. 2012. Spatial distribution pattern of the steppe toad-headed lizard (Phrynocephalus frontalis) and its influencing factors.?Asian Herpetol Res,?3(1): 46–51
Liu N., Jin Y., Yang M. 2008. Sand lizards in China. B Biol, 43(11): 1–3
Luke C. 1986. Convergent evolution of lizard toe fringes. Biol J Linn Soc,?27: 1–16
Martín J., López P. 2000. Fleeing to unsafe refuges: effects of conspicuousness and refuge safety on the escape decisions of the lizard Psammodromus algirus. Can J Zool, 78(2): 265–270
Morris D. W. 2003. Toward an ecological synthesis: a case for habitat selection.?Ecologies,?136(1): 1–13
Munkhbaatar M., Baillie J. E. M., Bodkin L., Batsaikhan N., Samiya R., Semenov D. V. 2006. Mongolian red list of reptiles and amphibians. London: Zool Soc London, Regent’s Park, 41–42
Nemes S., Vogrin M., Hartel T., ?llerer K. 2006. Habitat selection at the sand lizard (Lacerta agilis): ontogenetic shifts. North-West J Zool, 2(1): 17–26
Newbold T. A. S., MacMahon J. A. 2008. Consequences of cattle introduction in a shrubsteppe ecosystem: indirect effects on desert horned lizards (Phrynosoma platyrhinos).?West N Am Naturalist,?68(3): 291–302
Newbold T. A. S., MacMahon J. A. 2014. Determinants of habitat selection by desert horned lizards (Phrynosoma platyrhinos): the importance of abiotic factors associated with vegetation structure.?J Herpetol,?48(3): 306–316
Peng Y., Jiang G., Niu S., Liu M., Ding S., Liu S. 2006. Communities of typical sand dune-fixed plants in the central part of Otindag Sandy Region. Acta Bot Boreal-Occid Sin, 26(7): 1414–1419
Price-Rees S. J., Brown G. P., Shine R. 2013. Habitat selection by bluetongue lizards (Tiliqua, Scincidae) in tropical Australia: a study using GPS telemetry.?Anim Biotelemetry,?1(7): 1–14
Resetarits W. J. 2005. Habitat selection behaviour links local and regional scales in aquatic systems. Ecol Lett, 8(5): 480–486
Rodríguez-Robles J. A., Leal M., Losos J. B. 2005. Habitat selection by the Puerto Rican yellow-chinned anole, Anolis gundlachi.?Can J Zool,?83(7): 983–988
Shannon C. E., Weaver W. 1949. The mathematical theory of communication. University of Illinois Press, Urbana, Illinois, USA
Souter N. J., Bull C. M., Lethbridge M. R., Hutchinson M. N. 2007. Habitat requirements of the endangered pygmy bluetongue lizard, Tiliqua adelaidensis.?Biol Conserv,?135(1): 33–45
Suarez A. V., Richmond J. Q., Case T. J. 2000. Prey selection in horned lizards following the invasion of Argentine ants in southern California. Ecol Appl,?10(3): 711–725
Vitt L. J., Shepard D. B., Vieira G. H., Caldwell J. P., Colli G. R., Mesquita D. O. 2008. Ecology of Anolis nitens brasiliensis in Cerrado Woodlands of Cant?o.?Copeia, 2008(1): 144–153
Waddle J. H., Rice K. G., Mazzotti F. J., Percival H. F. 2008. Modeling the effect of toe clipping on tree frog survival: beyond the return rate. J Herpetol, 42(3): 467–473
Wang L., Hu X., Yu W., Li G., Guo J. 2006. Spatial heterogeneity of granule diameter and its relation with shrub size and soil erosion. Arid Land Geogr, 29 (5): 688–693
Wang Y., Fu J. 2004. Cladogenesis and vicariance patterns in the toad-headed lizard Phrynocephalus versicolor species complex. Copeia, 2004(2): 199–206
Warner D. A., Andrews R. M. 2002. Nest-site selection in relation to temperature and moisture by the lizard Sceloporus undulatus. Herpetologica, 58: 399–407
Warner D. A., Shine R. 2008. Maternal nest-site choice in a lizard with temperature-dependent sex determination.?Anim Behav,?75(3): 861–870
White M. A., Asner G. P., Nemani R. R., Privette J. L., Running S. W. 2000. Measuring fractional cover and leaf area index in arid ecosystems: digital camera, radiation transmittance, and laser altimetry methods. Remote Sens Environ, 74(1): 45–57
Yahner R. H. 2012. Habitat selection.?In Wildlife Behavior and Conservation. Springer, New York, 65–75
Zaady E., Bouskila A. 2002. Lizard burrows association with successional stages of biological soil crusts in an arid sandy region.?J Arid Environ,?50(2): 235–246
Zeng Z., Bi J., Li S., Chen S., Pike D., Gao Y., Du W. 2014. Effects of habitat alteration on lizard community and food web structure in a desert steppe ecosystem. Biol Conserv, 179: 86–92
Zhang T., Zhao H., Li S., Li F., Shirato Y., Ohkuro T., Taniyama I. 2004. A comparison of different measures for stabilizing moving sand dunes in the Horqin sandy land of inner Mongolia, China. J Arid Environ, 58(2): 203–214
Zhao E., Zhao K., Zhou K. 1999. Fauna Sinica, Reptilia, vol. 2, Squamata, Science Press, Beijing, China
Zhao K. 2001. Agamidae. In: Xurigan, (Ed.), Fauna Inner Mongolia, vol. 2. Inner Mongolia University Press, Hohhot, 160–172


Last Update: 2017-06-25