Michael WALL and Richard SHINE.Ecology and Behaviour of Burton’s Legless Lizard (Lialis burtonis, Pygopodidae) in Tropical Australia[J].Asian Herpetological Research(AHR),2013,4(1):9-21.[doi:10.3724/SP.J.1245.2013.00009]
Click Copy

Ecology and Behaviour of Burton’s Legless Lizard (Lialis burtonis, Pygopodidae) in Tropical Australia
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

2013 VoI.4 No.1
Research Field:
Original Article
Publishing date:


Ecology and Behaviour of Burton’s Legless Lizard (Lialis burtonis, Pygopodidae) in Tropical Australia
Michael WALL1 2 and Richard SHINE1*
1 School of Biological Sciences A08, University of Sydney, NSW 2006, Australia
2 Current address: 4940 Anza St. No. 4, San Francisco, CA 94121, USA
Squamata habitat use wet-dry tropics thermoregulation movement activity patterns
The elongate, functionally limbless flap-footed lizards (family Pygopodidae) are found throughout Australia, ranging into southern New Guinea. Despite their diversity and abundance in most Australian ecosystems, pygopodids have attracted little scientific study. An intensive ecological study of one pygopodid, Burton’s legless lizard (Lialis burtonis Gray 1835), was conducted in Australia’s tropical Northern Territory. L. burtonis eats nothing but other lizards, primarily skinks, and appears to feed relatively infrequently (only 20.8% of stomachs contained prey). Ovulation and mating occur chiefly in the late dry-season (beginning around September), and most egg-laying takes place in the early to middle wet-season (November–January). Females can lay multiple clutches per year, some of which may be fertilised with stored sperm. Free-ranging L. burtonis are sedentary ambush foragers, with radio-tracked lizards moving on average < 5 m/day. Most foraging is done diurnally, but lizards may be active at any time of day or night. Radiotracked lizards were usually found in leaf-litter microhabitats, a preference that was also evident in habitat-choice experiments using field enclosures. Lizards typically buried themselves in 6–8 cm of litter; at this depth, they detect potential prey items while staying hidden from predators and prey and avoiding lethally high temperatures.


Barker R. D., Vestjens W. J. M. 1989. The food of Australian birds, Vol. 1, Non-passerines. CSIRO Division of Wildlife and Ecology. Lyneham: ACT, 480 pp
Beaupre S. J. 1995. Comparative ecology of the mottled rock rattlesnake, Crotalus lepidus, in Big Bend National Park. Herpetologica, 51: 45–56
Bonnet X., Naulleau G., Shine R. 1999. The dangers of leaving home: Dispersal and mortality in snakes. Biol Cons, 89: 39–50
Brown G. P., Shine R. 2004. Maternal nest-site choice and offspring fitness in a tropical snake (Tropidonophis mairii, Colubridae). Ecology, 85: 1627–1634
Cogger H. G. 2000. Reptiles and amphibians of Australia, 6th edition. Sydney: Reed New Holland, 808 pp
Daltry J. C., Wuster W., Thorpe R. S. 1998. Intraspecific variation in the feeding ecology of the crotaline snake Calloselasma rhodostoma in Southeast Asia. J Herpetol, 32: 198–205
Donnellan S. C., Hutchinson M. N., Saint K. M. 1999. Molecular evidence for the phylogeny of Australian gekkonid lizards. Biol J Linn Soc, 67: 97–118
Ferguson G. W., Brown K. L., DeMarco V. 1982. Selective basis for the evolution of variable egg and hatchling size in some iguanid lizards. Herpetologica, 38: 178–188
Ferguson G. W., Fox S. F. 1984. Annual variation of survival advantage of large juvenile side-blotched lizards (Uta stansburiana): Its causes and evolutionary significance. Evolution, 38: 342–349
Ficken R. W., Matthiae P. E., Horwich R. 1971. Eye marks in vertebrates: Aids to vision. Science, 173: 936–939
Fitch H. S. 1981. Sexual size differences in reptiles. Misc Publ Univ Kans Mus Nat Hist, 70: 1–72
Fitzgerald M., Shine R., Lemckert F. 2002. Spatial ecology of arboreal snakes (Hoplocephalus stephensii, Elapidae) in an eastern Australian forest. Aust Ecol, 27: 537–545
Forsman A. 1996. Body size and net energy gain in gape-limited predators: A model. J Herpetol, 30: 307–319
Fox S. F. 1975. Natural selection on morphological phenotypes of the lizard Uta stansburiana. Evolution, 29: 95–107
Gans C. 1975. Tetrapod limblessness: Evolution and functional corollaries. Am Zool, 15: 455–467
Greene H. W. 1983. Dietary correlates of the origin and radiation of snakes. Am Zool, 23: 431–441
Greene H. W. 1997. Snakes: The evolution of mystery in nature. Berkeley, CA: University of California Press, 351 pp
Greer A. E. 1991. Limb reduction in squamates: Identification of the lineages and discussion of the trends. J Herpetol, 25: 166–173
Gregory P. T., Crampton L. H., Skebo K. M. 1999. Conflicts and interactions among reproduction, thermoregulation and feeding in viviparous reptiles: Are gravid snakes anorexic? J Zool, 248: 231–241
Holycross A. T., Painter C. W., Prival D. B., Swann D. E., Schroff M. J., Edwards T., Schwalbe C. R. 2002. Diet of Crotalus lepidus klauberi (banded rock rattlesnake). J Herpetol, 36: 589–597
Huey R. B., Pianka E. R., Vitt L. J. 2001. How often do lizards "run on empty"? Ecology, 82: 1–7
James C. D., Shine R. 1985. The seasonal timing of reproduction: A tropical-temperate comparison in Australian lizards. Oecologia, 67: 464–474
Jennings W. B., Pianka E. R., Donnellan S. 2003. Systematics of the lizard family Pygopodidae with implications for the diversity of Australian temperate biotas. Syst Biol, 52: 757–780
Jones S. 1992. Habitat relationships, diet and abundance of the endangered Pygopodid Aprasia parapulchella in the Australian Capital Territory and surrounding New South Wales. Honours Thesis, University of Canberra, ACT
King R. B. 1989. Sexual dimorphism in snake tail length: sexual selection, natural selection, or morphological constraint? Biol J Linn Soc, 38: 133–154
King R. B., Bittner T. D., Queral-Regil A., Cline J. H. 1999. Sexual dimorphism in neonate and adult snakes. J Zool, 247: 19–28
Kluge A. G. 1976. Phylogenetic relationships in the lizard family Pygopodidae: An evaluation of theory, methods, and data. Misc Pub Mus Zool Univ Mich, 152: 1–72
Lillywhite H. B., Henderson R. W. 1993. Behavioral and functional ecology of arboreal snakes. In Seigel R. A., Collins J. T. (Eds.), Snakes: Ecology and behaviour. New York: McGraw-Hill, 1–48
Martins M., Marques O. A. V., Sazima I. 2002. Ecological and phylogenetic correlates of feeding habits in neotropical pitvipers of the genus Bothrops. In Schuett G. W., H?ggren M., Douglas M. E., Greene H. W. (Eds.), Biology of the vipers. Utah: Eagle Mountain Publishing, 307–328
McDonald R. C., Isbell R. F., Speight J. G., Walker J., Hopkins M. S. 1998. Australian soil and land survey field handbook, 2nd edition. Canberra: Australian Collaborative Land Evaluation Program
Murray B. A., Bradshaw S. D., Edward D. H. 1991. Feeding behavior and the occurrence of caudal luring in Burton's pygopodid Lialis burtonis (Sauria: Pygopodidae). Copeia, 1991: 509–516
Osborne W. S., Lintermans M., Williams K. D. 1991. Distribution and conservation status of the endangered Pink-Tailed Legless Lizard Aprasia parapulchella (Kluge). Research Report 5. Tuggeranong, ACT, Australia: ACT Parks and Conservation Service
Patchell F. C., Shine R. 1986a. Food habits and reproductive biology of the Australian legless lizards (Pygopodidae). Copeia, 1986: 30–39
Patchell F. C., Shine R. 1986b. Feeding mechanisms in pygopodid lizards: How can Lialis swallow such large prey? J Herpetol. 20: 59–64
Pianka E. R., Vitt L. J. 2003. Lizards: Windows to the evolution of diversity. Los Angeles: University of California Press
Pough F. H., Kwiecinski G., Bemis W. 1978. Melanin deposits associated with the venom glands of snakes. J Morphol, 155: 63–71
Robert K. A., Thompson M. B. 2003. Reconstructing thermochron iButtons to reduce size and weight as a new technique in the study of small animal thermal biology. Herpetol Rev, 34: 130–132
Rodriguez-Robles J. A., Bell C. J., Greene H. W. 1999. Gape size and evolution of diet in snakes: Feeding ecology of erycine boas. J Zool, 248: 49–58
Shea G. M. 1993. Family Pygopodidae. In Glasby C. J., Ross G. J. B., Beesley P. L. (Eds.), Fauna of Australia, Vol. 2A, Amphibia and Reptilia. Canberra: Australian Government Publishing Service, 234–239
Shine R. 1986. Evolutionary advantages of limblessness: Evidence from the pygopodid lizards. Copeia, 1986: 525–529
Shine R. 1993. Sexual dimorphism in snakes. In Seigel R. A., Collins J. T. (Eds.), Snakes: Ecology and behaviour. New York: McGraw-Hill, 49–86
Shine R., Lambeck R. 1989. Ecology of frillneck lizards, Chlamydosaurus kingii (Agamidae), in tropical Australia. Aust Wildl Res, 16: 491–500
Shine R., Madsen T. 1996. Is thermoregulation unimportant for most reptiles? An example using water pythons (Liasis fuscus) in tropical Australia. Physiol Zool, 69: 252–269
Shine R., Phillips B., Waye H., Mason R. T. 2003a. Behavioral shifts associated with reproduction in garter snakes. Behav Ecol, 14: 251–256
Shine R., Sun L. X., Fitzgerald M., Kearney M. 2003b. A radiotelemetric study of movements and thermal biology of insular Chinese pit-vipers (Gloydius shedaoensis, Viperidae). Oikos, 100: 342–352
Wall M. 2006. The influence of foraging mode in snake evolution: Lessons from a snake analogue, Burton’s Legless Lizard (Lialis burtonis Gray, Pygopodidae). Ph.D. Thesis, University of Sydney, NSW
Wall M., Shine R. 2007. Dangerous food: Lacking venom and constriction, how do snake-like lizards (Lialis burtonis Gray, Pygopodidae) subdue their lizard prey? Biol J Linn Soc. 91: 719–727
Webb J. K., Shine R. 1994. Feeding habits and reproductive biology of Australian pygopodid lizards of the genus Aprasia. Copeia. 1994: 390–398
Wiens J. J., Slingluff J. L. 2001. How lizards turn into snakes: A phylogenetic analysis of body-form evolution in anguid lizards. Evolution, 55: 2303–2318


Last Update: 2016-03-15