Xiaming ZHU,Guanyan ZHU,Shengnan ZHANG,et al.Lineage Diversification and Niche Evolution in the Chinese Cobra Naja atra (Elapidae)[J].Asian Herpetological Research(AHR),2022,13(4):242-250.[doi:10.16373/j.cnki.ahr.220007]
Click Copy

Lineage Diversification and Niche Evolution in the Chinese Cobra Naja atra (Elapidae)
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

Issue:
2022 VoI.13 No.4
Page:
242-250
Research Field:
Publishing date:
2022-12-20

Info

Title:
Lineage Diversification and Niche Evolution in the Chinese Cobra Naja atra (Elapidae)
Author(s):
Xiaming ZHU12 Guanyan ZHU1 Shengnan ZHANG1 Yu DU3 Yanfu QU4 Longhui LIN1* and Xiang JI2*
1 Hangzhou Key Laboratory for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
2 Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, Zhejiang, China
3 Hainan Key Laboratory for Herpetological Research, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya 572022, Hainan, China
4 College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
Keywords:
climatic niche Elapidae Naja atra niche conservatism niche divergence
PACS:
-
DOI:
10.16373/j.cnki.ahr.220007
Abstract:
The role of niche evolution (niche conservatism or niche divergence) in lineage diversification is a poorly studied area. The Chinese cobra Naja atra (Elapidae) has diverged into three lineages: Lineage E in eastern China, Lineage S in southern China and Vietnam, and Lineage W in western China. However, whether the ecological niche is conserved or divergent among these three lineages is unknown. In the present study, we used ecological niche models in geographical space to study the ecological differences among lineages. We compared the niche overlap in environmental space to test niche conservatism and niche divergence. Our results showed that the three lineages of N. atra shared an ecological niche space between Lineages E and S/W, with the climatic niches of Lineages S and W representing a specialized fraction of the climatic niche of Lineage E. We speculated that the niche divergence between Lineages S and W was a consequence of geographical barriers limiting gene flow. Our study provides evidence for lineage diversification associated with both geographical isolation and climatic niche evolution, suggesting that early niche divergence between Lineages S and W, followed by niche conservatism, causes niche divergence among lineages.

References:

Aguirre-Gutiérrez J., Serna-Chavez H. M., Villalobos-Arambula A. R., Pérez de la Rosa J. A., Raes N. 2015. Similar but not equivalent: ecological niche comparison across closely-related Mexican white pines. Divers Distrib, 21(3): 245–257
Ahmadzadeh F., Flecks M., Carretero M. A., B?hme W., Ilgaz C., Engler J. O., Harris D. J., ?züm N., R?dder D. 2013. Rapid lizard radiation lacking niche conservatism: ecological diversification within a complex landscape. J Biogeogr, 40(9): 1807–1818
Aiello-Lammens M. E., Boria R. A., Radosavljevic A., Vilela B., Anderson R. P. 2015. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38(5): 541–545
Broennimann O., Fitzpatrick M. C., Pearman P. B., Petitpierre B., Pellissier L., Yoccoz N. G., Thuiller W., Fortin M. J., Randin C., Zimmermann N. E., Graham C. H., Guisan A. 2012. Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecol Biogeogr, 21: 481–497
Chou E, Kershaw F, Maxwell S. M, Collins T., Strindberg S., Rosenbaum H. C. 2020. Distribution of breeding humpback whale habitats and overlap with cumulative anthropogenic impacts in the Eastern Tropical Atlantic. Divers Distrib, 26(5): 549–564
Cicero C, Koo M. S. 2012. The role of niche divergence and phenotypic adaptation in promoting lineage diversification in the Sage Sparrow (Artemisiospiza belli, Aves: Emberizidae). Biol J Linn Soc, 107(2): 332–354
Costion C. M., Edwards W., Ford A. J., Metcalfe D. J., Cross H. B., Harrington M. G., Richardson J. E., Hilbert D. W., Lowe A. J., Crayn D. M. 2015. Using phylogenetic diversity to identify ancient rain forest refugia and diversification zones in a biodiversity hotspot. Divers Distrib, 21(3): 279–289
Di Cola V., Broennimann O., Petitpierre B., Breiner F. T., D’Amen M., Randin C., Engler R., Pottier J., Pio D., Dubuis A., Pellissier L., Mateo R. G., Hordijk W., Salamin N., Guisan A. 2017. ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography, 40(6): 774–787
Gama R., Aguirre‐Gutiérrez J., Stech M. 2017. Ecological niche comparison and molecular phylogeny segregate the invasive moss species Campylopus introflexus (Leucobryaceae, Bryophyta) from its closest relatives. Ecol Evol, 7(19): 8017–8031
Graham C. H., Ron S. R., Santos J. C., Schneider C. J., Moritz C. 2004. Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution, 58(8): 1781–1793
Gray L. N., Barley A. J., Poe S., Thomson R. C., Nieto‐Montes de Oca A., Wang I. J. 2019. Phylogeography of a widespread lizard complex reflects patterns of both geographic and ecological isolation. Mol Ecol, 28(3): 644–657
Guisan A., Petitpierre B., Broennimann O., Daehler C., Kueffer C. 2014. Unifying niche shift studies: insights from biological invasions. Trends Ecol Evol, 29(5): 260–269
Gutiérrez-Ortega J. S., Salinas-Rodríguez M. M., Ito T., Pérez-Farrera M. A., Vovides A. P., Martínez J. F., Molina-Freaner F, Hernández-López A., Kawaguchi L., Nagano A. J., Kajita T., Watano Y., Tsuchimatsu T., Takahashi Y., Murakami M. 2020. Niche conservatism promotes speciation in cycads: the case of Dioon merolae (Zamiaceae) in Mexico. New Phytol, 227(6): 1872–1884
Hu J. H., Broennimann O., Guisan A., Wang B., Huang Y., Jiang J. P. 2016. Niche conservatism in Gynandropaa frogs on the southeastern Qinghai-Tibetan Plateau. Sci Rep, 6: 32624
Hua X., Wiens J. J. 2013. How does climate influence speciation? Am Nat, 182(1): 1–12
Ji X., Chen H. L., Du W. G., Zhu B. Q. 2002. Radiotelemetry of thermoregulation and thermal tolerance on Chinese cobras (Naja atra) overwintering in a laboratory enclosure. Acta Zool Sin, 48(5): 591–598
Ji X., Wang Z. W. 2005. Geographic variation in reproductive traits and trade-offs between size and number of eggs of the Chinese cobra (Naja atra). Biol J Linn Soc, 85(1): 27–40
Jiménez-Valverde A., Nakazawa Y., Lira-noriega A., Peterson A. T. 2009. Environmental correlation structure and ecological niche model projections. Biodivers Inf, 6: 28–35
Kalkvik H. M., Stout I. J., Doonan T. J., Parkinson C. L. 2012. Investigating niche and lineage diversification in widely distributed taxa: phylogeography and ecological niche modeling of the Peromyscus maniculatus species group. Ecography, 35(1): 54–64
Kass J. M., Muscarella R., Galante P. J., Bohl C. L., Pinilla-Buitrago G. E., Boria R. A., Soley-Guardia M., Anderson R. P. 2021. ENM 2.0: Redesigned for customizable and reproducible modeling of species’ niches and distributions. Methods Ecol Evol, 12(9): 1602–1608
Kozak K. H., Wiens J. J. 2007. Climatic zonation drives latitudinal variation in speciation mechanisms. Proc Royal Soc B, 274(1628): 2995–3003
Lin L. H., Qu Y. F., Li H., Zhou K. Y., Ji X. 2012. Genetic structure and demographic history should inform conservation: Chinese cobras currently treated as homogenous show population divergence. PLoS One, 7(4): e36334
Lin L. H., Hua L., Qu Y. F., Gao J. F., Ji X. 2014. The phylogeographical pattern and conservation of the Chinese cobra (Naja atra) across its range based on mitochondrial control region sequences. PLoS One, 9(9): e106944
Lin L. H., Zhu X. M., Du Y., Fang M. C., Ji X. 2019. Global, regional, and cladistic patterns of variation in climatic niche breadths in terrestrial elapid snakes. Curr Zool, 65(1): 1–9
Low B. W., Zeng Y. W., Tan H. H., Yeo D. C. J. 2021. Predictor complexity and feature selection affect Maxent model transferability: Evidence from global freshwater invasive species. Divers Distrib, 27(3): 497–511
Maia-Carvalho B., Vale C. G., Sequeira F., Ferrand N., Martínez-Solano I., Gon?alves H. 2018. The roles of allopatric fragmentation and niche divergence in intraspecific lineage diversification in the common midwife toad (Alytes obstetricans). J Biogeogr, 45(9): 2146–2158
Muscarella R., Galante P. J., Soley-Guardia M., Boria R. A., Kass J. M., Uriarte M., Anderson R. P. 2014. ENM: An R package for conducting spatially independent uations and estimating optimal model complexity for MAXENT ecological niche models. Methods Ecol Evol, 5(11): 1198–1205
Peterson A. T. 2001. Predicting species geographic distributions based on ecological niche modeling. Condor, 103(3): 599–605
Peterson A. T., Sober?n J., Sánchez-Cordero V. 1999. Conservatism of ecological niches in evolutionary time. Science, 285(5431): 1265–1267
Petitpierre B., Kueffer C., Broennimann O., Randin C., Daehler C., Guisan A. 2012. Climatic niche shifts are rare among terrestrial plant invaders. Science, 335(6074): 1344–1348
R Development Core Team. 2019. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org
Radosavljevic A., Anderson R. P. 2014. Making better MAXENT models of species distributions, complexity, overfitting and uation. J Biogeogr, 41(4): 629–643
Rato C., Harris D. J., Perera A., Carvalho S. B., Carretero M. A., R?dder D. 2015. A combination of divergence and conservatism in the niche evolution of the Moorish gecko, Tarentola mauritanica (Gekkota: Phyllodactylidae). PLoS One, 10(5): e0127980
Raxworthy C. J., Ingram C. M., Rabibisoa N., Pearson, R. G. 2007. Applications of ecological niche modeling for species delimitation: a review and empirical uation using day geckos (Phelsuma) from Madagascar. Syst Biol, 56(6): 907–923
Sbragaglia V., Nu?ez J. D., Dominoni D., Coco S., Fanelli E., Azzurro E., Marini S., Nogueras M., Ponti M., del Rio Fernandez J., Aguzzi J. 2019. Annual rhythms of temporal niche partitioning in the Sparidae family are correlated to different environmental variables. Sci Rep, 9: 1708
Serra-Varela M. J., Grivet D., Vincenot L., Broennimann O., Gonzalo‐Jiménez J., Zimmermann N. E. 2015. Does phylogeographical structure relate to climatic niche divergence? A test using maritime pine (Pinus pinaster?Ait.). Global Ecol Biogeogr, 24(11): 1302–1313
Suárez-Atilano M., Rojas-Soto O., Parra J. L., Vázquez-Domínguez E. 2017. The role of the environment on the genetic divergence between two Boa imperator lineages. J Biogeogr, 44(9): 2045–2056
Velasco J. A., González-Salazar C. 2019. Akaike information criterion should not be a “test” of geographical prediction accuracy in ecological niche modelling. Ecol Inform, 51: 25–32
Velasco J. A., Martínez-Meyer E., Flores-Villela O. 2018. Climatic niche dynamics and its role in the insular endemism of Anolis lizards. Evol Biol, 45: 345–357
Warren D. L., Glor R. E., Turelli M. 2008. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution, 62(11): 2868–2883
Wiens J. J., Graham C. H. 2005. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst, 36: 519–539
Zhang Z. X., Kass J. M., Mammola S., Koizumi I., Li X. C., Tanaka K., Ikeda K., Suzuki T., Yokota M., Usio N. 2021. Lineage-level distribution models lead to more realistic climate change predictions for a threatened crayfish. Divers Distrib, 27(4): 684–695
Zhu X. M., Hua L., Fang M. C., Du Y., Lin C. X., Lin L. H., Ji X. 2021. Lineage diversification and niche evolution in the Reeves’ Butterfly Lizard Leiolepis reevesii (Agamidae). Integr Zool, 16(3): 404–419
Zink R. M. 2014. Homage to Hutchinson, and the role of ecology in lineage divergence and speciation. J Biogeogr, 41(5): 999–1006

Memo

Memo:
-
Last Update: 2022-12-25