Kun YANG,Yubin WO,Gang SHAO,et al.Phylogenetic Relationships among Chinese Rice Frogs within the Fejervarya limnocharis Species Complex (Amphibia: Dicroglossidae)[J].Asian Herpetological Research(AHR),2022,13(4):232-241.[doi:10.16373/j.cnki.ahr.210050]
Click Copy

Phylogenetic Relationships among Chinese Rice Frogs within the Fejervarya limnocharis Species Complex (Amphibia: Dicroglossidae)
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

2022 VoI.13 No.4
Research Field:
Publishing date:


Phylogenetic Relationships among Chinese Rice Frogs within the Fejervarya limnocharis Species Complex (Amphibia: Dicroglossidae)
Kun YANG1# Yubin WO2# Gang SHAO1 Pinghu LIAO1 Haojie TONG1 Richard P. BROWN1* and Yuanting JIN1*
1 College of Life Sciences, China Jiliang University, Hangzhou 310018, Zhejiang, China
2 Ningbo Beilun District Center for Disease Control and Prevention, Ningbo 315000, Zhejiang, China
amphibian Asia genetic structure phylogeography population expansion Zhoushan Archipelago
We present a molecular assessment of the widely-distributed rice frog (Fejervarya limnocharis) which provides many new samples that add to knowledge of their phylogeography within China and considers genetic support for five Chinese species within this complex. Two mtDNA fragments from 270 individuals and eight nuclear DNA loci (105 individuals) were sequenced from specimens sampled from across China. Data from nine specimens from China, Indonesia and Japan were also retrieved from previous studies. MtDNA was informative about population divergence within China and indicated one major clade (with four subclades) from South China and the Zhoushan Archipelago, Zhejiang, China, and a second major clade (with eight subclades) from other parts of China. Recent demographic expansions (less than 50ka ago) were detected within three of these 12 subclades, potentially associated with lowered sea-levels after marine transgressions. Notably, most frogs from the previously unstudied Zhoushan Archipelago (eastern China) were found to be closely related to Japanese populations. BPP and STACEY species delimitation analyses of the multilocus data favoured five candidate species within the complex. Previous work had described Fejervarya multistriata and F. kawamurai from the Chinese mainland although here we detected considerable genetic divergence within the latter and found that this may be indicative of two species. One of these corresponds to the Zhoushan Archipelago, Zhejiang, China and Japan, and the other from most parts of Chinese mainland. This study provides a large multilocus dataset that contributes to the systematics of this species complex.


Behrooz R., Kaboli M., Arnal V., Nazarizadeh M., Asadi A., Salmanian A., Montgelard C. 2018. Conservation below the species level: Suitable evolutionarily significant units among mountain vipers (the Montivipera raddei complex) in Iran. J Hered, 109(4): 416–425
Bossuyt F., Milinkovitch M. C. 2000. Convergent adaptive radiations in Madagascan and Asian ranid frogs reveal covariation between larval and adult traits. Proc Natl Acad Sci USA, 97: 6585–6590
Bouckaert R., Heled J., Kühnert D., Vaughan T., Wu C. H., Xie D., Drummond A. 2014. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput Biol, 10(4): e1003537
Casacci L. P., Barbero F., Balletto E. J. 2014. The “Evolutionarily Significant Unit” concept and its applicability in biological conservation. Ital J Zool, 81(2): 182–193
Dai J. H. 2009. Phylogeography of Pelophylax plancyi species complex of China. Ph.D. Thesis. Nanjing Normal University, Nanjing (In Chinese with English abstract)
Djong H. T., Matsui M., Kuramoto M., Nishioka M., Sumida M. 2011. A new species of the Fejervarya limnocharis complex from Japan (Anura, Dicroglossidae). Zool Sci, 28(12): 922–929
Excoffier L., Lischer H. E. 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res, 10(3): 564–567
Excoffier L., Schneider S. 1999. Why hunter-gatherer populations do not show signs of pleistocene demographic expansions. Proc Natl Acad Sci USA, 96(19): 10597–10602
Favre A., P?ckert M., Pauls S. U., J?hnig S. C., Uhl D., Michalak I., Muellner-Riehl A. N. 2015. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biol Rev Camb Philos Soc, 90(1): 236–253
Fei L., Ye C., Jiang J., Xie F. 2002. On taxonomic status of Rana limnocharis group with revision of nomenclature of the Rice Frog from China. Herpetologica Sinica, 9: 88–96
Fu Y. X. 1997. Statistical test of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147: 915–925
Gravenhorst J. L. C. 1829. Deliciae Musei Zoologici Vratislaviensis. Fasciculus primus. Chelonios et Batrachia. Leipzig: Leopold Voss
Heled J., Drummond A. J. 2010. Bayesian inference of species trees from multilocus data. Mol Biol Evol, 27(3): 570–580
Jones G. 2017. Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent. J Math Biol, 74(1): 447–467
Kotaki M., Kurabayashi A., Matsui M., Khonsue W., Djong T. H., Tandon M., Sumida M. 2008. Genetic divergences and phylogenetic relationships among the Fejervarya limnocharis complex in Thailand and neighboring countries revealed by mitochondrial and nuclear genes. Zool Sci, 25: 381–390
Kotaki M., Kurabayashi A., Matsui M., Kuramoto M., Djong., Sumida M. 2010. Molecular phylogeny of the diversified frogs of genus Fejervarya (Anura: Dicroglossidae). Zool Sci, 27(5): 386–395
Lanfear R., Frandsen P. B., Wright A. M., Senfeld T., Calcott B. 2017. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol, 34(3): 772–773
Leaché A. D., Zhu T., Rannala B., Yang Z. 2019. The spectre of too many species. Syst Biol, 68(1):168–181
Librado P., Rozas J. 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11): 1451–1452
Lin J. X., Dai L. P., Wang Y., Liu M. 2012. Quaternary marine transgressions in eastern China. J Palaeogeogr, 1(2): 105–125
Lin L. H., Zhao Q., Ji X. 2008. Conservation genetics of the Chinese cobra (Naja atra) investigated with mitochondrial DNA sequences. Zool Sci, 25(9): 888–893
Liu L., Pearl D. K. 2007. Species trees from gene trees: Reconstructing Bayesian posterior distributions of a species phylogeny using estimated gene tree distributions. Syst Biol, 56(3): 504–514
Macey J. R., Ii J. A. S., Larson A., Fang Z., Wang Y., Tuniyev B. S., Papenfuss T. J. 1998. Phylogenetic relationships of toads in the Bufo bufo species group from the eastern escarpment of the Tibetan Plateau: A case of vicariance and dispersal. Mol Phylogenet Evol, 9(1): 80–87
Macey J. R., Strasburg J. L., Brisson J. A., Vrendenburg V. T., Jennings M., Larson A. 2001. Molecular phylogenetics of western North American frogs of the Rana boylii species group. Mol Phylogenet Evol, 19(1): 131–143
Matsui M., Toda M., Ota H. J. C. H. 2007. A new species of frog allied to Fejervarya limnocharis from the southern Ryukyus, Japan (Amphibia: Ranidae). Curr Herpetol, 26(2): 65–79
Muellner-Riehl A. N. 2019. Mountains as evolutionary arenas: Patterns, emerging approaches, paradigm shifts, and their implications for plant phylogeographic research in the Tibeto-Himalayan Region. Front Plant Sci, 10: 195
Ni G., Li Q., Kong L., Yu H. 2014. Comparative phylogeography in marginal seas of the northwestern Pacific. Mol Ecol, 23(3): 534–548
Nylander J. A. 2004. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University
Nystuen A. 2001. Lasergene 5.0. 1. Biotech Software Intern Rep, 2(6): 239–244
Ronquist F., Huelsenbeck J. P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12): 1572
Stamatakis A. 2014. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9): 1312–1313
Tajima F. 1989. The effect of change in population size on DNA polymorphism. Genetics 123: 597–601
Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997. The CLUSTALX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 25(24): 4876–4882
Tong H. J., Wo Y. B., Liao P. H., Jin Y. T. 2017. Phylogenetic, demographic and dating analyses of Bufo gargarizans populations from the Zhoushan Archipelago and Chinese mainland. Asian Herpetol J, 8(3):165–173
Veith M., Kosuch J., Ohler A., Dubois A. 2001. Systematics of Fejervarya limnocharis (Gravenhorst, 1829) (Amphibia, Anura, Ranidae) and related species. 2. Morphological and molecular variation in frogs from the Greater Sunda islands (Sumatra, Java, Borneo) with the definition of two species. Alytes, 19(1): 5–28
Wang J. T., Wang P. X. 1980. Relationship between sea-level changes and climatic fluctuation in East China since late Pleistocene. Acta Geogr Sin, 35(4): 299–312 (In Chinese with English abstract)
Wei L. I., Jonr F., Stephen J. R., Cassandram M., Zhang L., Zhang S. 2010. Phylogeography of the Japanese pipistrelle bat, Pipistrellus abramus, in China: The impact of ancient and recent events on population genetic structure. Biol J Lin Soc, 99(3): 582–594
Wen J., Zhang J. Q., Nie Z. L., Zhong Y., Sun H. 2014. Evolutionary diversifications of plants on the Qinghai-Tibetan Plateau. Front Genet, 5: 4
Yang Z. 2015. The BPP program for species tree estimation and species delimitation. Current Zool, 61(5): 854–865
Yang Z., Rannala B. 2010. Bayesian species delimitation using multilocus sequence data. Proc Natl Acad Sci USA, 107(20): 9264–9269
Zhang J. Q., Tang L. L., Zou H. 2008. The response to the variety of paleoclimate and sea level in the east China sea after the late Pleistocence. Trans Oceanol Limnol, 1: 26–31 (In Chinese with English abstract)
Zhong J., Liu Z. Q., Wang Y. Q. 2008. Phylogeography of the rice frog, Fejervarya multistriata (Anura: Ranidae), from China based on mtDNA D-loop sequences. Zool Sci, 25(8): 811–820


Last Update: 2022-12-25