Rongping BU,Fanrong XIAO,P. George LOVELL,et al.Partial Masquerading and Background Matching in Two Asian Box Turtle Species (Cuora spp.)[J].Asian Herpetological Research(AHR),2022,13(3):168-179.[doi:10.16373/j.cnki.ahr.210064]
Click Copy

Partial Masquerading and Background Matching in Two Asian Box Turtle Species (Cuora spp.)
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

2022 VoI.13 No.3
Research Field:
Publishing date:


Partial Masquerading and Background Matching in Two Asian Box Turtle Species (Cuora spp.)
Rongping BU1 Fanrong XIAO1* P. George LOVELL2 Jichao WANG1 and Haitao SHI1*
1 Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, Hainan, China
2 Division of Psychology and Forensic Sciences, School of Applied Sciences, Abertay University, Dundee DD1 1HG, UK
camouflage Cuora galbinifrons Cuora mouhotii patterns protective coloration
Animals living in heterogeneous natural environments adopt different camouflage strategies against different backgrounds, and behavioral adaptation is crucial for their survival. However, studies of camouflage strategies have not always quantified the effect of multiple strategies used together. In the present study, we used a human visual model to quantify similarities in color and shape between the carapace patterns of two Cuora species and their preferred habitats. Our results showed that the color of the middle stripe on the carapace of Cuora galbinifrons (Indochinese box turtle) was significantly similar to the color of their preferred substrates. Meanwhile, the middle stripe on the carapace of C. mouhotii (keeled box turtle) contrasted more with their preferred substrates, and the side stripe matched most closely with the environment. Furthermore, the carapace side stripe of C. galbinifrons and the carapace middle stripe of C. mouhotii highly contrasted with their preferred substrates. We quantified the similarity in shape between the high-contrast stripes of both Cuora species and leaves from their habitats. The carapace middle stripe of C. mouhotii was most similar in shape to leaves from the broad-leaves substrate, and the carapace side stripe of C. galbinifrons was the most similar in shape to leaves from the bamboo-leaves substrate. We determined that these species adopt partial masquerading when their entire carapace is exposed and partially match their background when they semi-cover themselves in leaf litter. To the best of our knowledge, this is the first study to demonstrate that partial masquerading and background matching improve the camouflage effect of Asian box turtles in their preferred habitats. This is a novel study focusing on the influence of the shape and color of individual carapace segments on reducing detectability and recognition.


Bu R., Xiao F., Lovell P. G., Ye Z., Shi H. 2020. Structural and colored disruption as camouflage strategies in two sympatric Asian box turtle species (Cuora spp.). Glob Ecol Conserv, 24: e01361
Caves E. M., Brandley N. C., Johnsen S. 2018. Visual acuity and the evolution of signals. Trends Ecol Evol, 33: 358–372
Cestari C., Goncalves C. D., Sazima I. 2018. Use flexibility of perch types by the branch-camouflaged Common Potoo (Nyctibius griseus): Why this bird may occasionally dare to perch on artificial substrates. Wilson J Ornithol, 130: 191–199
Chiao C. C., Hanlon R. T. 2001. Cuttlefish cue visually on area — Not shape or aspect ratio — of light objects in the substrate to produce disruptive body patterns for camouflage. Biol Bull, 201: 269–270
Cott H. B. 1940. Adaptive Coloration in Animals. London, UK: Methuen and Co. Ltd
Cuthill I. C., Stevens M., Sheppard J., Maddocks T., Parraga C. A., Troscianko T. 2005. Disruptive coloration and background pattern matching. Nature, 434: 72–77
Endler J. A. 1978. A predator’s view of animal color patterns. Evol Biol, 11: 319–364
Endler J. A. 1981. An overview of the relationships between mimicry and crypsis. Biol J Linn Soc, 16: 25–31
Espinosa I., Cuthill I. C. 2014. Disruptive colouration and perceptual grouping. PLoS ONE, 9: e87153
Farmer E. W., Taylor R. M. 1980. Visual search through color displays: Effects of target-background similarity and background uniformity. Percept Psycho, 27: 267–272
Feria C. S. 2012. The effects of distractors in multiple object tracking are modulated by the similarity of distractor and target features. Perception, 41: 287–304
Ferreira T., Rasband W. 2011. The ImageJ User Guide. Bethesda, MD, USA: National Institutes of Health,
Gómez J., Ramo C., Troscianko J. Stevens M., Castro M., Pérez-Hurtado A., Li?án-Cembrano G., Amat J. A. 2018. Individual egg camouflage is influenced by microhabitat selection and use of nest materials in ground-nesting birds. Behav Ecol Sociobiol, 72: 142
Hall J. R., Baddeley R. J., Scottsamuel N. E., Shohet A., Cuthill I. C. 2017. Camouflaging moving objects: Crypsis And masquerade. Behav Ecol, 28: 1248–1255
Holveck M. J., Grégoire A., Guerreiro R., Staszewski V., Boulinier T., Gomez D., Doutrelant C. 2017. Kittiwake eggs viewed by conspecifics and predators: Implications for colour signal evolution. Biol J Linn Soc, 122: 301–312
Howe P. D., Holcombe A. O. 2012. The effect of visual distinctiveness on multiple object tracking performance. Front Psychol, 3: 307
Kang C. K., Moon J. Y., Lee S. I., Jablonski P. G. 2012. Camouflage through an active choice of a resting spot and body orientation in moths. J Evolution Biol, 25: 1695–1702
Karpestam E., Merilaita S., Forsman A. 2014. Body size influences differently the detectabilities of colour morphs of cryptic prey. Biol J Linn Soc, 113: 112–122
Lin J. Y., Jin L., Hu S., Katsavounidis I., Li Z., Aaron A., Kuo C. C. J. 2015. Experimental design and analysis of JND test on coded image/video. Applications of Digital Image Processing XXXVIII. International Society for Optics and Photonics
Lovell P. G., Ruxton G. D., Langridge K. V., Spencer K. A. 2013. Egg-laying substrate selection for optimal camouflage by quail. Curr Biol, 23: 260–264
Marshall K. L. A., Philpot K. E., Stevens M. 2016. Microhabitat choice in island lizards enhances camouflage against avian predators. Sci Rep, 6: 19815
McGaugh E. S. 2008. Color variation among habitat types in the spiny softshell turtles (Trionychidae: Apalone) of Cuatrociénegas, Coahuila, Mexico. J Herpetol, 42: 347–353
Merilaita S., Lind J. 2005. Background-matching and disruptive coloration, and the evolution of cryptic coloration. P Roy Soc Lond B Bio, 272: 665–670
Nafus M. G., Germano J. M., Perry J. A., Todd B. D., Walsh A., Swaisgood R. R. 2015. Hiding in plain sight: A study on camouflage and habitat selection in a slow-moving desert herbivore. Behav Ecol, 26: 1389–1394
Nakayama K., Silverman G. H., 1986. Serial and parallel processing of visual feature conjunctions. Nature, 320: 264–265
Nokelainen O., Brito J. C., Scott-Samuel N. E., Valkonen J. K., Boratyński Z. 2020. Camouflage accuracy in Sahara — Sahel desert rodents. J Anim Ecol, 89: 1658–1669
Panetta D., Buresch K., Hanlon R. T. 2017. Dynamic masquerade with morphing three-dimensional skin in cuttlefish. Biol Letters, 13: 20170070
Price N., Green S., Troscianko J., Tregenza T., Stevens M. 2019. Background matching and disruptive coloration as habitat-specific strategies for camouflage. Sci Rep, 9: 7840
Rowe J. W., Miller B. J., Stuart M. A., Snyder C., Tucker J. K., Clark D. L., Wittle L. W., Lamer J. T. 2014. Substrate color-induced melanization in eight turtle species from four chelonian groups. Zoology, 117: 245–252
Ruxton G. D., Sherratt T. N., Speed M. P. 2004. Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals, and Mimicry. Oxford: Oxford University Press, 23–25
Ruxton G. D., Stevens M. 2015. The evolutionary ecology of decorating behaviour. Biol Letters, 11: 20150325
Samal A., Seth S., Cueto K. 2004. A feature-based approach to conflation of geospatial sources. Int J Geogr Inf Sci, 18: 459–489
Schaefer H. M., Stobbe N. 2006. Disruptive coloration provides camouflage independent of background matching. P Roy Soc Lond B Bio, 273: 2427–2432
Skelhorn J., Rowland H. M., Speed M. P., Ruxton G. D. 2010a. Masquerade: Camouflage without crypsis. Science, 327: 51
Skelhorn J., Rowland H. M., Speed M. P., Wert L. D. W., Quinn L., Delf J., Ruxton G. D. 2010b. Size-dependent misclassification of masquerading prey. Behav Ecol, 21: 1344–1348
Skelhorn J., Rowland H. M., Delf J., Speed M. P., Ruxton G. D. 2011. Density-dependent predation influences the evolution and behavior of masquerading prey. P Natl Acad Sci USA, 108: 6532–6536
Skelhorn J., Ruxton G. D. 2011. Mimicking multiple models: Polyphenetic masqueraders gain additional benefits from crypsis. Behav Ecol, 22: 60–65
Skelhorn J., Ruxton G. D. 2013. Size-dependent microhabitat selection by masquerading prey. Behav Ecol, 24: 89–97
Stevens M., Cuthill I. C. 2006. Disruptive coloration, crypsis and edge detection in early visual processing. P Roy Soc Lond B Bio, 273: 2141–2147
Stevens M., Parraga C. A., Cuthill I. C., Partridge J. C, Troscianko T. 2007. Using digital photography to study animal coloration. Biol J Linn Soc, 90: 211–237
Stevens M., Winney I. S., Cantor A., Graham J. 2009. Outline and surface disruption in animal camouflage. Philos T R Soc B, 276: 781–786
Stevens M., Merilaita S. 2011. Animal Camouflage: Mechanisms and Function. Cambridge: Cambridge University Press
Stevens M., Searle W. T., Seymour J. E., Marshall K. L., Ruxton G. D. 2011. Motion dazzle and camouflage as distinct anti-predator defenses. BMC Biol, 9: 81
Stevens M., Broderick A. C., Godley B. J., Lown A. E., Troscianko J., Weber N., Weber S. B. 2015. Phenotype-environment matching in sand fleas. Biol Letters, 11: 20150494
Stevens M., Ruxton G. D. 2018. The key role of behaviour in animal camouflage. Biol Rev, 94: 116–134
Suzuki T. N., Sakurai R. 2015. Bent posture improves the protective value of bird dropping masquerading by caterpillars. Anim Behav, 105: 79–84
Troscianko J., Stevens M. 2015. Image calibration and analysis toolbox — A free software suite for objectively measuring reflectance, colour and pattern. Methods in Ecol Evol, 6: 1320–1331
Troscianko J., Wilson-Aggarwal J., Stevens M., Spottiswoode C. N. 2016. Camouflage predicts survival in ground-nesting birds. Sci Rep, 6: 19966
Troscianko J., Wilson-Aggarwal J., Griffiths D., Spottiswoode C. N., Stevens M. 2017. Relative advantages of dichromatic and trichromatic color vision in camouflage breaking. Behav Ecol, 28: 556–564
van den Berg C. P., Troscianko J., Endler J. A., Marshall N. J., Cheney K. L. 2020. Quantitative colour pattern analysis (QCPA): A comprehensive framework for the analysis of colour patterns in nature. Methods in Ecol Evol, 11: 316–332
Vorobyev M., Osorio D. 1998. Receptor noise as a determinant of colour thresholds. P Roy Soc Lond B Bio, 265: 351–358
Webster R. J., Hassall C., Herdman C. M., Godin J. J., Sherratt T. N. 2013. Disruptive camouflage impairs object recognition. Biol Letters, 9: 20130501
Willemsen R. E., Hailey A. 2003. Sexual dimorphism of body size and shell shape in European tortoises. J Zool, 260: 353–365
Wyszecki G., Stiles W. S. 1982. Color Science: Concepts and Methods, Quantitative Data and Formulae. New York: Wiley-Interscience
Xiao F., Yang C., Shi H., Wang J., Sun L., Lin L. 2016. Background matching and camouflage efficiency predict population density in four-eyed turtle (Sacalia quadriocellata). Behav Process, 131: 40–46
Xiao F., Wang J., Shi H., Long Z., Lin L., Wang W. 2017. Ecomorphological correlates of microhabitat selection in two sympatric Asian Box Turtle species (Geoemydidae: Cuora). Can J Zool, 95: 753–758
Xiao F., Hong Z., Wang J., Butterfield T., Shi H. 2020. The relationship between shell morphology and crevice size affecting retreat selection of the keeled box turtle (Cuora mouhotii). Asian Herpetol Res, 11: 342–349
Xiao F., Bu R., Shi H. 2021. Quantifying shape similarity between prey and uninteresting models to study animal masquerade. Behaviour, 158: 1–18


Last Update: 2022-09-25