Xiaolong ZHAO,Wei YU,Zeyu ZHU,et al.Factors Influencing Home Ranges of the Qinghai Toad-headed Lizard (Phrynocephalus vlangalii) on the Dangjin Mountain, Gansu[J].Asian Herpetological Research(AHR),2022,13(2):137-144.[doi:10.16373/j.cnki.ahr.210063]
Click Copy

Factors Influencing Home Ranges of the Qinghai Toad-headed Lizard (Phrynocephalus vlangalii) on the Dangjin Mountain, Gansu
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

2022 VoI.13 No.2
Research Field:
Publishing date:


Factors Influencing Home Ranges of the Qinghai Toad-headed Lizard (Phrynocephalus vlangalii) on the Dangjin Mountain, Gansu
Xiaolong ZHAO12 Wei YU23 Zeyu ZHU23 Yuxia YANG1* and Zhigao ZENG2*
1 The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, Hebei, China
2 Key Laboratory of Animal Ecology and Conservation, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
3 College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, China
home range influence factor plateau lizard radio tracking
Home range is an important ecological parameter reflecting the suitability of animal habitats. To study the size and factors influencing the home ranges of the Qinghai toad-headed lizard (Phrynocephalus vlangalii) in different habitats, from July to September 2020, we radio-tagged and tracked 15 individuals in each of sites distributed at high (3600 m) and low (2600 m) altitudes on the Dangjin Mountain, Gansu Province, northwest China. We calculated home range size using the 100% minimum convex polygon method, and analyzed the influence of inherent lizard characteristics and external environmental factors. Our results revealed that for both high- and low-altitude lizard populations, the sizes of home ranges were positively correlated with lizard body mass. Moreover, after eliminating the effect of body mass as a covariable, we established that the home ranges of high-altitude lizards (5255.1 ± 1103.8 m2) were larger than those of the low-altitude lizards (2208.1 ± 348.7 m2). Lizards in the high-altitude population were also characterized by longer daily suitable activity times and spent significantly more time in full sunlight than those in the low-altitude population. Furthermore, the food resources for lizards in low-altitude habitats were more abundant than those in high-altitude habitats. In conclusion, we established that P. vlangalii lizards inhabiting high-altitude sites had larger home ranges than conspecific lizards distributed at a lower altitude, which was associated not only with endogenous factors, such as body mass, but also with habitat-related environmental factors, such as the quality of thermal resources and availability of food.


Ariano-Sánchez D., Mortensen R. M., Reinhardt S., Rosell F. 2020. Escaping drought: Seasonality effects on home range, movement patterns and habitat selection of the Guatemalan beaded lizard. Glob Ecol Conserv, 23: e01178
Bao M., Zeng Y., Ma J. B., Yuan P. Z. 1998. Condition of distrbution, active law and nature of food of Phrynocephalus viangalii and Eremias mrltiocellata. J Qinghai Norm Univ (Nat Sci Ed), 1998(4): 43–46 (In Chinese)
Biebouw K. 2009. Home range size and use in Allocebus trichotis in Analamazaotra special reserve, central eastern Madagascar. Int J Primatol, 30: 367–386
Buckley L. B. 2008. Linking traits to energetics and population dynamics to predict lizard ranges in changing environments. Am Nat, 171: E1–E19
Christian K. A., Waldschmidt S. 1984. Relationship between lizard home range and body size: A reanalysis of the data. Herpetologica, 40(1): 68–75
Civantos E., Forsman A. 2000. Determinants of survival in juvenile Psammodromus algirus lizards. Oecologia, 124: 64–72
Corriale M. J., Muschetto E., Herrera E. A. 2013. Influence of group sizes and food resources in home-range sizes of capybaras from Argentina. J Mammal, 94: 19–28
Escudero P. C., González Marín M. A., Morando M., Avila L. J. 2020. Use of space and its relationship with sex, body size, and color polymorphism in Liolaemus xanthoviridis (Iguania: Liolaemini) in Patagonia. J Herpetol, 54: 57–66
Fair W. S., Henke S. E. 1999. Movements, home ranges, and survival of texas horned lizards (Phrynosoma cornutum). J Herpetol, 33: 517–525
Grant B. W. 1990. Trade-offs in activity time and physiological performance for thermoregulating desert lizards, Sceloporus Merriami. Ecology, 71: 2323–2333
Greenwood P. J., Swingland I. R. 1983. Animal movement: Approaches, adaptations and constraints. Oxford: Clarendon Press
Hagen I. J., Bull C. M. 2011. Home ranges in the trees: radiotelemetry of the prehensile tailed skink, Corucia zebrata. J Herpetol, 45: 36–39
Harestad A. S., Bunnell F. L. 1979. Home range and body weight–reuation. Ecology, 60: 389–402
Hellickson M. W., Campbell T. A., Miller K. V., Marchinton R. L., Deyoung C. A. 2008. Seasonal ranges and site fidelity of adult male white-tailed deer (Odoicolus virginiacus) in southern Texas. Southwest Nat, 531:1–8
Hertz P. E., Huey R. B., Stevenson R. D. 1993. uating temperature regulation by field-active ectotherms: The fallacy of the inappropriate question. Am Nat, 142: 796–818
Hibbitts T. J., Walkup D. K., Laduc T. J., Wolaver B. D., Pierre J. P., Duran M., Neuharth D., Frizzell S., Adams C. S., Johnson T. E., Yandell D., Ryberg W. A. 2021. Natural history of the spot-tailed earless lizards (Holbrookia lacerata and H. subcaudalis). J Nat Hist, 55: 495–514
Huey R. B., Pianka E. R., Schoener T. W. 1983. Lizard ecology: Studies of a model organism. Massachusetts, USA: Harvard University Press
Kearney M., Shine R., Porter W. P. 2009. The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming, Proc Natl Acad Sci USA, 106: 3835–3840
Li S. R., Wang Y., Ma L., Zeng Z. G., Bi J. H., Du W. G. 2017. Thermal ecology of three coexistent desert lizards: Implications for habitat divergence and thermal vulnerability. J Comp Physiol B, 187: 1009–1018
Martins E. P. 2014. Lizard ecology. In Vitt Laurie J. and Pianka Eric R. (Eds.), Chapter 6, Phylogenetic Perspectives on the Evolution of Lizard Territoriality. Princeton University Press
Morellet N., Bonenfant C., B?rger L., Ossi F., Cagnacci F., Heurich M., Kjellander P., Linnell J. D. C., Nicoloso S., Sustr P., Urbano F., Mysterud A. 2013. Seasonality, weather and climate affect home range size in roe deer across a wide latitudinal gradient within Europe. J Anim Ecol, 82: 1326–1339
Patterson L. D., Blouin-Demers G. 2020. Partial support for food availability and thermal quality as drivers of density and area used in Yarrow’s spiny lizards (Sceloporus jarrovii). Can J Zool 98: 105–116
Perry G., Garland T. 2002. Lizard home ranges revisited: Effects of sex, body size, diet, habitat, and phylogeny. Ecology, 83: 1870–1885
Rose B. 1982. Lizard home range–methodology and functions. J Herpetol, 16: 253–269
Roth E. D. 2005. Spatial ecology of a cottonmouth (Agkistrodon piscivorus) population in east Texas. J Herpetol, 39: 308–312
Ruby D. E., Dunham A. E. 1987. Variation in home range size along an elevational gradient in the iguanid lizard Sceloporus merriami. Oecologia, 71: 473–480
Seebacher F., Shine R. 2004. uating thermoregulation in reptiles: The fallacy of the inappropriately applied method. Physiol Biochem Zool, 77: 688–695
Singleton J. M., Garland T. 2018. Among-individual variation in desert iguanas (Squamata: Dipsosaurus dorsalis): Endurance capacity is positively related to home range size. Physiol Biochem Zool, 91: 725–730
Somma L. A. 1990. A categorization and bibliographic survey of parental behavior in lepidosaurian reptiles. Smithsonian Herp Inf Serv, 81: 1–53
Sound P., Veith M. 2000. Weather effects on intrahabitat movements of the western green lizard, Lacerta bilineata (Daudin, 1802), at its northern distribution range border: A radio-tracking study. Can J Zool, 78: 1831–1839
Stellatelli O. A., Block C., Moreno-Azocar D. L., Vega L. E., Isacch J. P., Cruz F. B. 2016. Scale dependency of Liolaemus lizards’ home range in response to different environmental variables. Curr Zool, 62: 521–530
Tamburello N., C?té I. M., Dulvy N. K. 2015. Energy and the scaling of animal space use. Am Nat, 186: 196–211
Van Beest F. M., Rivrud I. M., Loe L. E., Milner J. M., Mysterud A. 2011. What determines variation in home range size across spatiotemporal scales in a large browsing herbivore? J Anim Ecol, 80: 771–785
Verwaijen D., Damme R. V. 2008. Wide home ranges for widely foraging lizards. Zoology, 111: 37–47
Vesy M. N., Watters J. L., Moody R. W., Schauber E. M., Mook J. M., Siler C. D. 2021. Survivorship and spatial patterns of an urban population of Texas horned lizards. J Wildlife Manage, 85: 1267–1279
Vitt L. J., Pianka E. R. 1995. Perspectives on lizards. (Book reviews: Lizard ecology. Historical and experimental perspectives.). Science, 267: 1668–1669
Wang S. G., Zeng Z. Y., Wu P. F., Lan Z. J., Wang Y. Z. 2004. The home range of Phrynocephalus vlangalii. J Sichuan Univ (Nat Sci Ed), 41(2): 403–408 (In Chinese)
Wasiolka B., Jeltsch F., Henschel J., Blaum N. 2010. Space use of the spotted sand lizard (Pedioplanis l. lineoocellata) under different degradation states. Afr J Ecol, 48: 96–104
Webb J. K., Shine R. 1997. A field study of spatial ecology and movements of a threatened snake species, Hoplocephalus bungaroides. Biol Conserv, 82(2): 203–217
Weber W. D., Anthony N. M., Lailvaux S. P. 2021. Size but not relatedness drives the spatial distribution of males within an urban population of Anolis carolinensis lizards. Ecol Evol, 11: 2886–2898
Zhao E. M., Zhao K. T., Zhou K. Y. 1999. Fauna Sinica, Reptilia, Vol. 2 (Squamata, Lacertilia). Beijing , China: Science Press (In Chinese)


Last Update: 2022-06-25