Tao LIANG,Lu ZHOU,Wenya DAI,et al.Spatial Patterns and Drivers of Chinese Lizard Richness among Multiple Scales[J].Asian Herpetological Research(AHR),2022,13(2):117-124.[doi:10.16373/j.cnki.ahr.210056]
Click Copy

Spatial Patterns and Drivers of Chinese Lizard Richness among Multiple Scales
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

Issue:
2022 VoI.13 No.2
Page:
117-124
Research Field:
Publishing date:
2022-06-22

Info

Title:
Spatial Patterns and Drivers of Chinese Lizard Richness among Multiple Scales
Author(s):
Tao LIANG1 3* Lu ZHOU2 Wenya DAI3 Zi ZHANG3 and Lei SHI1*
1 College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
2 College of Life Sciences, Hainan Normal University, Haikou 571158, Hainan, China
3 College of Forestry, Nanjing Forestry University, Nanjing 230037, Jiangsu, China
Keywords:
altitudinal assemblage diversity environmental factors latitudinal reptile
PACS:
-
DOI:
10.16373/j.cnki.ahr.210056
Abstract:
Species richness is one of the focuses of the preponderance of ecological studies. Latitudinal and altitudinal gradients of species richness are two well-known macroecological patterns. Most studies on the macroecology of species richness and its determinants are mainly focused on a single scale, although a few include multiple scales. Across multiple scales, we can better understand the diversity gradients and the potential causes. Here, we gathered the maps of distribution for 212 species of Chinese lizards from published studies, and to describe the overall Chinese lizard richness patterns. We studied the relationships between the latitudinal and altitudinal patterns of species richness among Chinese lizards at the assemblage level. We further tested the relationship between lizard richness and environmental factors among multiple studied scales (large scale: 1.5° × 1.5°, medium scale: 1° × 1°, and small scale: 0.5° × 0.5°). Regions with higher species richness occurs in in south China, and we found negative latitudinal richness gradients. We found a low-altitude plateau pattern between species richness and altitude, and lizard richness decreased with altitude above 2500 m. Lizard richness was positively correlated with temperature and net primary productivity, but negatively correlated with actual evapotranspiration, temperature, and precipitation seasonality at all three scales. However, lizard species richness was positively correlated with heterogeneity only at the 1° scale. Based on the results across multiple scales, we confirmed that the species richness patterns of Chinese lizards were driven by multiple factors, which consistent with the predictions of the ambient energy, seasonality, and productivity hypotheses. However, the relationship between lizard richness and heterogeneity differed among studied scales owing to the different levels of altitude heterogeneity within grids at different scales.

References:

Astudillo-Scalia Y., Albuquerque F. 2020. Why should we reconsider using species richness in spatial conservation prioritization? Biodivers Conserv, 29(6): 2055–2067
Bivand R. S., Hauke J., Kossowski T. 2013. Computing the Jacobian in Gaussian spatial autoregressive models: An illustrated comparison of available methods. Geographic Analysis, 45(2): 150–179
Bivand R. S., Wong D. W. S. 2018. Comparing implementations of global and local indicators of spatial association. Test, 27(3): 716–748
Cai B., Huang Y., Chen Y. Y., Hu J. H., Guo X. G., Wang Y. Z. 2012. Geographic patterns and ecological factors correlates of snake species richness in China. Zool Res, 33(4): 343?353
Currie D. J. 1991. Energy and large-scale patterns of animal- and plant-species richness. Am Nat, 137(1): 27–49
Dalby L., Mcgill B. J., Fox A. D., Svenning J. 2014. Seasonality drives global-scale diversity patterns in waterfowl (Anseriformes) via temporal niche exploitation. Global Ecol Biogeogr, 23(5): 550–562
Dillon K. G., Conway C. J. 2021. Habitat heterogeneity, temperature, and primary productivity drive elevational gradients in avian species diversity. Ecol Evol, 11(11): 5985–5997
Dobzhansky T. 1950. Evolution in tropics. Am Sci, 38(2): 208–221
Dormann C. F., McPherson J. M., Araújo M. B., Bivand R., Bolliger J., Carl G., Davies R. G., Hirzel A., Jetz W., Kissling W. D., Kühn I., Ohlemüller R., Peres‐Neto P. R., Reineking B., Schr?der B., Schurr F. M., Wilson R. 2007. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography, 30(5): 609–628
Evans K. L., Newson S. E., Storch D., Greenwood J. J. D., Gaston K. J. 2008. Spatial Scale, Abundance and the Species-Energy Relationship in British Birds. J Anim Ecol, 77(2): 395–405
Evans K. L., Warren P. H., Gaston K. J. 2005. Species-energy relationships at the macroecological scale: a review of the mechanisms. Biol Rev, 80(1): 1–25
Field R., Hawkins B. A., Cornell H. V., Currie D. J., Diniz-Filho J., Guégan J., Kaufman D. M., Kerr J. T., Mittelbach G. G., Oberdorff T. 2010. Spatial species-richness gradients across scales: a meta-analysis. J Biogeogr, 36(1): 132–147
Giraudoux P. 2018. pgirmess: Spatial analysis and data mining for field ecologists. R package version 1.6.9. Retrieved from https://CRAN.Rproject.org/packa ge=pgirmess
Gouveia S. F., Hortal J., Cassemiro F. A. S., Rangel T. F., Diniz‐Filho J. A. F. 2013. Nonstationary effects of productivity, seasonality, and historical climate changes on global amphibian diversity. Ecography, 36(1): 104–113
Hawkins B. A., Field R., Cornell H. V., Currie D. J., Guégan J.-F., Kaufman D. M., Kerr J. T., Mittelbach G. G., Oberdorff T., O’Brien E. M., Porter E. E., Turner J. R. G. 2003. Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84(12): 3105–3117
Hawkins B. A., Leroy B., Rodríguez M., Singer A., Vilela B., Villalobos F., Wang X., Zeleny D. 2017. Structural bias in aggregated species‐level variables driven by repeated species co‐occurrences: a pervasive problem in community and assemblage data. J Biogeogr, 44(6): 1199–1211
Hijmans R. J. 2020. Raster: Geographic Data Analysis and Modeling. R package version 3.0–12. https://CRAN.R-project.org/package=raster
Hortal J., Carrascal L. M., Triantis K. A., Thebault E., Meiri S., Sfenthourakis S. 2013. Species richness can decrease with altitude but not with habitat diversity. Proc Natl Acad Sci USA, 110(24): E2149–E2150
Huang Y., Dai Q., Chen Y., Wan H., Li J., Wang Y. 2011. Lizard species richness patterns in China and its environmental associations. Biodivers Conserv, 20(7): 1399–1414
Ignacio, Quintero, Walter, Jetz. 2018. Global elevational diversity and diversification of birds. Nature, 555: 246–250
Jins V.J., Panigrahi M., Jayapal R., Bishop T.R. 2021. Elevational gradients of reptile richness in the southern Western Ghats of India: uating spatial and bioclimatic drivers. Biotropica, 53 (1): 317–318
Klopfer P. H. 1959. Environmental determinants of faunal diversity. Am Nat, 93(873): 337–342
Lewin A., Feldman A., Bauer A. M., Belmaker J., Broadley D. G., Chirio L., Itescu Y., LeBreton M., Maza E., Meirte D., Nagy Z. T., Novosolov M., Roll U., Tallowin O., Trape J. F., Vidan E., Meiri S. 2016. Patterns of species richness, endemism and environmental gradients of African reptiles. J Biogeogr, 43(12): 2380–2390
Liang T., Zhang Z., Dai W.-y., Shi L., Lu C.-h. 2021. Spatial patterns in the size of Chinese lizards are driven by multiple factors. Ecol Evol, 11(14): 9621–9630
McCain C. M. 2010. Global analysis of reptile elevational diversity. Global Ecol Biogeogr, 19(4): 541–553
Pianka E. R. 1966. Latitudinal gradients in species diversity: A review of concepts. Am Nat, 100(910): 33–46
Pincheira‐Donoso D., Meiri S., Jara M., Olalla‐Tárraga M. ?., Hodgson D. J. 2019. Global patterns of body size evolution are driven by precipitation in legless amphibians. Ecography, 42(10): 1682–1690
Pollock L. J., Thuiller W., Jetz W. 2017. Large conservation gains possible for global biodiversity facets. Nature, 546(7656): 141–144
Pontarp M., Bunnefeld L., Cabral J. S., Etienne R. S., Fritz S. A., Gillespie R., Graham C. H., Hagen O., Hartig F., Huang S. 2019. The latitudinal diversity gradient: novel understanding through mechanistic eco-evolutionary models. Trends in Ecol Evol, 34(3): 211–223
Powney G. D., Grenyer R., Orme C. D. L., Owens I. P. F., Meiri S. 2010. Hot, dry and different: Australian lizard richness is unlike that of mammals, amphibians and birds. Global Ecol and Biogeogr, 19(3): 386–396
Qian H., Wang X., Wang S., Li Y. 2007. Environmental Determinants of Amphibian and Reptile Species Richness in China. Ecography, 30(4): 471–482
Rahbek C. 1995. The elevational gradient of species richness: A uniform pattern? Ecography, 18(2): 200–205
Rahbek C. 1997. The relationship among area, elevation, and regional species richness in neotropical birds. AmNat, 149(5): 875–902
Rahbek C., Graves G. R. 2001. Multiscale Assessment of Patterns of Avian Species Richness. Proc Natl Acad Sci USA, 98(8): 4534–4539
Ricklefs R. E. 2004. A comprehensive framework for global patterns in biodiversity. Ecology letters, 7(1): 1–15
Rodríguez M. ?., Belmontes J. A., Hawkins B. A. 2005. Energy, water and large-scale patterns of reptile and amphibian species richness in Europe. Acta Oecol, 28(1): 65–70
Roll U., Feldman A., Novosolov M., Allison A., Bauer A. M., Bernard R., B?hm M., Castro-Herrera F., Chirio L., Collen B., Colli G. R., Dabool L., Das I., Doan T. M., Grismer L. L., Hoogmoed M., Itescu Y., Kraus F., LeBreton M., Lewin A., Martins M., Maza E., Meirte D., Nagy Z. T., Nogueira C. C., Pauwels O. S. G., Pincheira-Donoso D., Powney G. D., Sindaco R., Tallowin O. J. S., Torres-Carvajal O., Trap. 2017. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat Ecol Evol, 1(11): 1677–1682
Rosauer D. F., Pollock L. J., Linke S., Jetz W. 2017. Phylogenetically informed spatial planning is required to conserve the mammalian tree of life. P Roy Soc B-Biol Sci, 284(1865): 20170627
Schall J. J., Pianka E. R. 1978. Geographical trends in numbers of species. Science, 201(4357): 679–686
Slobodkin L. B., Sanders H. L. 1969. On the contribution of environmental predictability to species diversity. Brookhaven Symp Biol, 22: 82–95
Tao X., Cui S., Jiang Z., Chu H., Li N., Yang D., Li C. 2018. Reptilian fauna and elevational patterns of the reptile species diversity in Altay Prefecture in Xinjiang, China. Biodivers Sci, 26(6): 578–589
Terribile L. C., Diniz-Filho J., Rodríguez M., Rangel T. 2010. Richness patterns, species distributions and the principle of extreme deconstruction. Global Ecol Biogeogr, 18(2): 123–136
Trabucco A., Zomer R. J. 2010. Global soil water balance geospatial database. CGIAR Consortium for Spatial Information. CGIAR Consortium for Spatial Information. Retrieved from https ://cgiar csi. community/data/global-high-resol ution-soil-water-balan ce/
Uetz P., Freed P., Aguilar R., Ho?ek J. 2021. The Reptile Database, http://www.reptile-database.org, accessed [2021-05]
Velasco J. A., Fabricio V., Diniz-Filho J. A. F., Algar A. C., Oscar F. V., Gunther K., Steven P., Enrique M. M. 2018. Climatic and evolutionary factors shaping geographical gradients of species richness in Anolis lizards. Biol J Linne Soc, 123(3): 615–627
Vilela B., Villalobos F. 2015. letsR: a new R package for data handling and analysis in macroecology. Methods Ecol Evol, 6(10): 1229–1234
Wang K., Ren J. L., Chen H. M., Lv Z. T., Guo X. G., Jiang K., Chen J. M., Li J. T., Guo P., Wang Y. Y., Che J. 2020. The updated checklists of amphibians and reptiles of China. Biodivers Sci, 28(2): 189–218(In Chinese)
Whiting E. T., Fox D. L. 2021. Latitudinal and environmental patterns of species richness in lizards and snakes across continental North America. J Biogeogr, 48(2): 291–304
Whittaker R. J., Nogués-Bravo D., Araújo M. B. 2007. Geographical Gradients of Species Richness: A Test of the Water-Energy Conjecture of Hawkins et al. (2003) Using European Data for Five Taxa. Global Ecol Biogeogr, 16(1): 76–89
Wood S. N. 2017. Generalized Additive Models: An Introduction with R (2nd edition). Boca Raton: Chapman and Hall/CRC
Zhang Y., Qian L., Spalink D., Sun L., Sun H. 2021. Spatial phylogenetics of two topographic extremes of the Hengduan Mountains in southwestern China and its implications for biodiversity conservation. Plant Diversity, 43(3): 181–191
Zhao E. M., Zhao K. T., Zhou K. Y. 1999. Fauna Sinica, Reptilia (Squamata: Lacertilia). Beijing: Science Press
Zhao S., Fang J., Peng C., Tang Z. 2006. Relationships between species richness of vascular plants and terrestrial vertebrates in China: Analyses based on data of nature reserves. Divers Distrib, 12(2): 189–194
Zheng Z., Gong D., Sun C., Li X., Li W. 2014. Elevational pattern of amphibian and reptile diversity in Qinling Range and explanation. Biodivers Sci, 22(5): 596–607
Zhou L., Liang T., Shi L. 2019. Amphibian and reptilian chorotypes in the arid land of central asia and their determinants. Sci Rep, 9: 9453
Zhou L., Shi L. 2015. Amphibian and reptilian distribution patterns in the transitional zone between the Euro-Siberian and Central Asia Subreaims. J Arid Land, 7(4): 555–565

Memo

Memo:
-
Last Update: 2022-06-25