Bicheng ZHU,Xiaoqian SUN,Haodi ZHANG,et al.Circadian Rhythm and Intersexual Differences in Auditory Frequency Sensitivity in Emei Music Frogs[J].Asian Herpetological Research(AHR),2022,13(1):43-52.[doi:10.16373/j.cnki.ahr.210047]
Click Copy

Circadian Rhythm and Intersexual Differences in Auditory Frequency Sensitivity in Emei Music Frogs
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

2022 VoI.13 No.1
Research Field:
Publishing date:


Circadian Rhythm and Intersexual Differences in Auditory Frequency Sensitivity in Emei Music Frogs
Bicheng ZHU1 Xiaoqian SUN1 2 Haodi ZHANG1 2 Yezhong TANG1 and Jianguo CUI1*
1 CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
auditory brainstem response auditory plasticity day-night rhythm frog sexual auditory dimorphism the matched filter hypothesis
In anurans, calling behaviour is strongly seasonal and circadian. Previous studies have revealed that auditory sensitivity in frogs exhibits seasonal plasticity, and electroencephalographic signals exhibit highly correlated circadian patterns; of which, the circadian rhythm remains unknown. In this study, the circadian rhythm and intersexual differences of auditory sensitivity were tested in the Emei music frog (Nidirana daunchina). This was achieved by comparing thresholds and latencies of auditory brainstem responses (ABRs) evoked by tones and clicks stimuli between male and female frogs during the day and at night, respectively. Our results revealed that both auditory thresholds and latencies had no differences between day and night except the latencies in 3.5–4.0 kHz frequencies. However, the thresholds of tone pip evoked ABRs differed significantly between male and female frogs from 2.5 to 5.0 kHz. This demonstrated that the auditory sensitivity of Emei music frogs exhibits sexual dimorphism at high frequencies, with female frogs exhibiting greater auditory sensitivity than that of male frogs. Simultaneously, the power spectra of male advertisement calls are matched well with the frequency range of auditory sensitivity in male and female frogs, which supports the matched filter hypothesis. Our study enhances the understanding of circadian plasticity and sexual dimorphism of auditory sensitivity in frogs.


Arak A. 1988. Sexual size dimorphism in body size: A model and a test. Evolution, 42: 820–825
Bames C. A., McNaughton B. L., Goddard G. V., Douglas R. M., Adamec R. 1977. Circadian rhythm of synaptic excitability in rat and monkey central nervous system. Science, 197: 91–92
Beaupre S. J., Jacobson E. R., Lillywhite H. B., Zamudio K. 2004. Guidelines for the use of live amphibians and reptiles in field and laboratory research. Retrieved from
Boersma P. P. G. 2002. Praat, a system for doing phonetics by computer. Glot Int, 5: 341–345
Brittan-Powell E., Christensen-Dalsgaard J., Tang Y., Carr C., Dooling R. 2010. The auditory brainstem response in two lizard species. J Acoust Soc Am, 128: 787–794
Brittan-Powell E., Dooling R. J. 2004. Development of auditory sensitivity in budgerigars (Melopsittacus undulatus). J Acoust Soc Am, 115: 3092–3102
Capranica R. R., Moffat A. J. M. 1983. Neurobehavioral correlates of sound communication in anurans. In Ewert J. P., Capranica R. R., Ingle D. (Eds.), Vertebrate Neuroethology. New York: Plenum, 701–730
Caras M. L., Brenowitz E., Rubel E. W. 2010. Peripheral auditory processing changes seasonally in Gambel’s white-crowned sparrow. J Comp Phys A, 196: 581–599
Chen J., Jono T., Cui J., Yue X., Tang Y. 2016. The acoustic properties of low intensity vocalizations match hearing sensitivity in the webbed-toed gecko, Gekko subpalmatus. PLoS One, 12: e0170831
Chen Q., Cui J., Fang G., Brauth S. E., Tang Y. 2011. Acoustic analysis of the advertisement calls of the music frog, Babina daunchina. J Herpet, 45: 406–416
Cui J., Song X., Fang G., Xu F., Brauth S. E., Tang Y. 2011. Circadian rhythm of calling behavior in the Emei music frog (Babina daunchina) is associated with habitat temperature and relative humidity. Asian Herpetol Res, 2: 149–154
Cui J., Tang Y., Narins P. 2012. Real estate ads in Emei music frog vocalizations: Female preference for calls emanating from burrows. Biol Lett, 8: 337–340
Cui J., Zhu B., Fang G., Brauth S. E., Tang Y. 2017. Effect of the level of anesthesia on the auditory brainstem response in the Emei music frog (Babina daunchina). PLoS One, 12: e0169449
Dooling R. J., Peters S. S., Searcy M. H. 1979. Auditory sensitivity and vocalizations of the field sparrow (Spizella pusilla). Bull Psychon Soc, 14: 106–108
Forstmeier W., Nakagawa S., Griffith S. C, Kempenaers B. 2014. Female extra-pair mating: Adaptation or genetic constraint? Trends Ecol Evol, 29: 456–464
Gall M. D., Brierley L. E., Lucas J. R. 2011. Species and sex effects on auditory processing in brown-headed cowbirds and red-winged blackbirds. Anim Behav, 81: 973–982
Gall M. D., Salameh T. S., Lucas J. R. 2013. Songbird frequency selectivity and temporal resolution vary with sex and season. Proc Roy Soc B-Biol Sci, 280: 20122296
Gall M. D, Wilczynski W. 2015. Hearing conspecific vocal signals alters peripheral auditory sensitivity. Proc Roy Soc B-Biol Sci, 282: 20150749
Gerhardt H. C., Schwarz J. J. 2001. Auditory tuning and frequency preferences in anurans. In Ryan M. J. (Eds.), Anuran communication. Washington DC: Smithsonian Institution Press, 73–85
Goense J., Feng A. 2005. Seasonal changes in frequency tuning and temporal processing in single neurons in the frog auditory midbrain. J Neurobiol, 65: 22–36
Goutte S., Mason M. J., Christensen-Dalsgaard J., Montealegre Z. F., Chivers B. D., Sarria S. F. A., Antoniazzi M. M., Jared C., Sato L. A, Toledo L. F. 2017. Evidence of auditory insensitivity to vocalization frequencies in two frogs. Sci Rep, 7: 12121
Hall J. W. 2007. New handbook of auditory evoked responses. Boston: Allyn and Bacon
Hetherington T. E. 1994. Sexual differences in the tympanic frequency responses of the American bullfrog (Rana catesbeiana). J Acoust Soc Am, 96: 1186–1188
Jean-Matthieu M., Michael I. 2002. Sexual size dimorphism in anurans. Proc Roy Soc B-Biol Sci, 1507: 2301–2307
Jerger J., Hall J. 1980. Effects of age and sex on auditory brainstem response. Arch Otolaryngol, 106: 387–391
Katbamna B., Brown J., Collard M., Ide C. 2006. Auditory brainstem responses to airborne sounds in the aquatic frog Xenopus laevis: Correlation with middle ear characteristics. J Comp Phys A, 192: 381–387
Kostarakos K., Hennig M. R., Heiner R. 2009. Two matched filters and the evolution of mating signals in four species of cricket.?Front Zool,?6: 22
Ladich F., Yan H. Y. 1998. Correlation between auditory sensitivity and vocalization in anabantoid fishes. J Comp Phys A, 182: 737–746.
Liu W. R., Shen J. X., Zhang Y. J., Xu Z. M., Qi Z., Xue M. Q. 2014. Auditory sexual difference in the large odorous frog, Odorrana graminea. J Comp Phys A, 200: 311–316
Lucas J., Freeberg T., Krishnan A., Long G. 2002. A comparative study of avian auditory brainstem responses: Correlations with phylogeny and vocal complexity, and seasonal effects. J Comp Phys A, 188: 981–992
Lucas J., Freeberg T., Long G., Krishnan A. 2007. Seasonal variation in avian auditory evoked responses to tones: A comparative analysis of Carolina chickadees, tufted titmice, and white-breasted nuthatches. J Comp Phys A, 193: 201–215
Lynch K. S., Wilczynski W. 2006. Social regulation of plasma estradiol concentration in a female anuran. Horm Behav, 50: 101–106
Mason M. J., Lin C. C., Narins P. M. 2003. Sex differences in the middle ear of the bullfrog (Rana catesbeiana). Brain Behav Evol, 61: 91–101
Moreno-Gómez F. N., Sueur J., Soto-Gamboa M., Penna M. 2013. Female frog auditory sensitivity, male calls, and background noise: Potential influences on the evolution of a peculiar matched filter. Biol J Linn Soc, 110: 814–827
Narins P. M. 2001. Ectothermy’s last stand: Hearing in the heat and cold. In Ryan M. J. (Eds.), Anuran communication. Washington DC: Smithsonian Institution Press, 61–70
Narins P. M., Capranica R. R. 1976. Sexual differences in the auditory system of the tree frog Eleutherodactylus coqui. Science, 192: 378–380
Narins P. M., Feng A. S., Fay R. R., Popper A. N. 2006. Hearing and sound communication in amphibians. New York: Springer Science
O’Bryant E. L., Wilczynski W. 2010. Changes in plasma testosterone levels and brain AVT cell number during the breeding season in the green treefrog. Brain Behav Evol, 75: 271–281
Pando M. P. 2002. Sassone-Corsi P: Unraveling the mechanisms of the vertebrat circadian clock: Zebrafish may light the way. Bioessays, 24: 419–426
Ramil R., Po-Nien L., Lauren G., Eric G., Jennifer O. 2011. Circadian rhythms in the pineal organ persist in zebrafish larvae that lack ventral brain. BMC Neurosci, 12: 7
Rohmann K. N., Fergus D. J., Bass A. H. 2013. Plasticity in ion channel expression underlies variation in hearing during reproductive cycles. Curr Biol, 23: 678–683
Ryan M. J. 1986. Neuroanatomy influences speciation rates among anurans. Proc Natl Acad Sci USA, 83: 1379–1382
Ryan M. J., Wilczynski W. 1988. Coevolution of sender and receiver: Effect on local mate preferecnce in cricket frogs. Science, 240: 1786–1788
Schrode K. M., Buerkle N. P., Brittan-Powell E. F., Bee M. A. 2014. Auditory brainstem responses in Cope’s gray treefrog (Hyla chrysoscelis): Effects of frequency, level, sex and size. J Comp Phys A, 200: 221–238
Sisneros J., Bass A. 2003. Seasonal plasticity of peripheral auditory frequency sensitivity. J Neurosci, 23: 1049–1058
Sun X. Q., Zhao L. H., Chen Q. H., Wang J. C., Cui J. G. 2019. Auditory sensitivity changes with diurnal temperature variation in little torrent frogs (Amolops torrentis). Bioacoustics, 29: 684–696
Wang J. C., Wang T. L., Fu S. H., Brauth S. E., Cui J. G. 2016. Auditory brainstem responses in the chinese tiger frog Hoplobatrachus chinensis (osbeck, 1765) (anura: dicroglossidae) reveal sexually dimorphic hearing sensitivity. Ital J Zool, 83: 482–489
Wang T. L., Li H. D., Cui J. G., Zhai X. F., Shi H. T., Wang J. C. 2019. Auditory brainstem responses in the red-eared slider trachemys scripta elegans (testudoformes: emydidae) reveal sexually dimorphic hearing sensitivity. J Comp Phys A, 205: 847–854
Werner Y. L., Pylka J., Schneider H., Seifan M., Walkowiak W., Werner-Reiss U. 2009. Function of the sexually dimorphic ear of the American bullfrog, Rana catesbeiana: Brief review and new insight. J Exp Biol, 212: 2204–2214
Wilczynski W., Keddy-Hector A., Ryan M. J. 1992. Call patterns and basilar papilla tuning in cricket frogs. I. Differences among populations and between sexes. Brain Behav Evol, 39: 229–237
Witte K., Farris H. E., Ryan M. J., Wilczynski W. 2005. How cricket frog females deal with a noisy world: Habitat-related differences in auditory tuning. Behav Ecol, 16: 571–579
Womack M. C., Christensen-Dalsgaard J., Coloma L. A., Hoke K. L. 2018. Sensitive high frequency hearing in earless and partially eared harlequin frogs (Atelopus). J Exp Biol, 221: jeb.169664
Yang Y., Zhu B., Wang J., Brauth S. E., Tang Y., Cui J. 2018. A test of the matched filter hypothesis in two sympatric frogs. Chiromantis doriae and Feihyla vittata. Bioacoustics, 28: 488–502
Zakon H., Wilczynski W. 1988. The physiology of the anuran eighth nerve. In Fritzsch B., Walkowiak W., Ryan R., Wilczynski W., Heatherington T. (Eds.), The Evolution of the Amphibian Auditory System. New York: Wiley, 125–155
Zhang D., Cui J., Tang Y. 2012. Plasticity of peripheral auditory frequency sensitivity in Emei music frog. PLoS One, 7: e45792
Zhang H., Zhu B., Zhou Y., He Q., Sun X., Wang J., Cui J. 2021. Females and males respond differently to calls impaired by noise in a tree frog. Ecol Evol, 11: 9159–9167
Zhao L., Wang J., Yang Y., Zhu B., Brauth S. E., Tang Y., Cui J. 2017. An exception to the matched filter hypothesis: A mismatch of male call frequency and female best hearing frequency in a torrent frog. Ecol Evol, 7: 419–428
Zhou X., Jen P. H. S., Seburn K. L., Frankel W. N., Zheng Q. Y. 2006. Auditory brainstem responses in 10 inbred strains of mice. Brain Res, 1091: 16–26
Zhu B., Wang J., Brauth S. E., Tang Y., Cui J. 2017. The spectral structure of vocalizations match hearing sensitivity but imprecisely in Kurixalus odontotarsus. Bioacoustics, 26: 121–134


Last Update: 2022-03-25