Weizhao YANG,Tao ZHANG,Zhongyi YAO,et al.Transcriptome Sequencing Provides Evidence of Genetic Assimilation in a Toad-Headed Lizard at High Altitude[J].Asian Herpetological Research(AHR),2021,12(3):315-322.[doi:10.16373/j.cnki.ahr.200123]
Click Copy

Transcriptome Sequencing Provides Evidence of Genetic Assimilation in a Toad-Headed Lizard at High Altitude
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

2021 VoI.12 No.3
Research Field:
Publishing date:


Transcriptome Sequencing Provides Evidence of Genetic Assimilation in a Toad-Headed Lizard at High Altitude
Weizhao YANG12 Tao ZHANG3 Zhongyi YAO1 Xiaolong TANG3 and Yin QI1*
1 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
2 Department of Biology, Lund University, Lund 22362, Sweden
3 Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou 730000, Gansu, China
genetic assimilation gene expression plasticity Phrynocephalus vlangalii
Understanding how organisms adapt to the environment is a compelling question in modern evolutionary biology. Genetic assimilation provides an alternative hypothesis to explain adaptation, in which phenotypic plasticity is first triggered by environmental factors, followed by selection on genotypes that reduce the plastic expression of phenotypes. To investigate the evidence of genetic assimilation in a high-altitude dweller, the toad-headed agama Phrynocephalus vlangalii, we conducted a translocation experiment by moving individuals from high- to low-altitude environments. We then measured their gene expression profiles by transcriptome sequencing in heart, liver and muscle, and compared them to two low-altitude species P. axillaris and P. forsythii. The results showed that the general expression profile of P. vlangalii was similar to its viviparous relative P. forsythii, however, the differentially expressed genes in the liver of P. vlangalii showed a distinct pattern compared to both the low-altitude species. In particular, several key genes (FASN, ACAA2 and ECI2) within fatty acid metabolic pathway were no longer differentially expressed in P. valgnalii, suggesting the loss of plasticity for this pathway after translocation. This study provides evidence of genetic assimilation in fatty acid metabolism that may have facilitated the adaptation to high-altitude for P. vlangalii.


Abe H., Ohtake A., Yamamoto S., Satoh Y., Tkayanagi M., Amaya Y., Takiguchi M., Sakuraba H., Suzuki Y., Mori M., Niimi H. 1993. Cloning and sequence analysis of a full length cDNA encoding human mitochondrial 3-oxoacyl-CoA thiolase. Biochim Biophy Acta, 1216(2): 304–306
Anders S., Pyl P. T., Huber W. 2015. HTSeq – a python framework to work with high-throughput sequencing data. Bioinformatics, 31: 166–169
Andrews S. 2010. FastQC: A quality control tool for high throughput sequence data. Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Beaman J. E., White C. R., Seebacher F. 2016. Evolution of plasticity: Mechanistic link between development and reversible acclimation. Trends Ecol Evol, 31: 237–249
Bloch G., Grozinger C. M. 2011. Social molecular pathways and the evolution of bee societies. Philos Trans R Soc B, 366: 2155–2170
Bolger A. M., Lohse M., Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics, 30(15): 2114–2120
Bray N. L., Pimentel H., Melsted P., Pachter L. 2016. Near-optimal probabilistic RNA-seq quantification. Nat Biotech, 34: 525–527
Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T. L. 2009. BLAST+: Architecture and applications. BMC Bioinform, 10(1): 421
Carroll S. B. 2008. Evo-devo and an expanding evolutionary synthesis: A genetic theory of morphological evolution. Cell, 134: 25–36
Cheviron Z. A., Brumfield R. T. 2011. Genomic insights into adaptation to high-altitude environments. Heredity, 108: 354–361
Colinet H., Hoffmann A. A. 2012. Comparing phenotypic effects and molecular correlates of developmental, gradual and rapid cold acclimation responses in Drosophila melanogaster. Funct Ecol, 26: 84–93
Cooper R. U., Clough L. M., Farwell M. A., West T. L. 2002. Hypoxia-induced metabolic and antioxidant enzymatic activities in the estuarine fish (Leiostomus xanthurus). J Exp Mar Biol Ecol, 279: 1–20
Dobin A., Davis C. A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T. R. 2013. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics, 29(1): 15–21
Dworkin I. 2005. A study of canalization and developmental stability in the sternopleural bristle system of Drosophila melanogaster. Evolution, 59: 1500–1509
Geisbrecht B. V., Zhang D., Schulz H., Gould S. J. 1999. Characterization of PECI, a novel monofunctional Delta(3), Delta(2)-enoyl-CoA isomerase of mammalian peroxisomes. J Biol Chem, 274(31): 21797–21803
Ghalambor C. K., Angeloni L. M., Carroll S. P. 2010. Behavior as phenotypic plasticity. 90–107. In Evolutionary Behavioral Ecology. Chicago: Oxford University Press
Grabherr M. G., Haas B. J., Yassour M., Levin J. Z., Thompson D. A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q., Chen Z., Mauceli E., Hacohen N., Gnirke A., Rhind N., Palma F. D., Birren B. W., Nusbaum C., Lindblad-Toh K., Friedman N., Regev A. 2011. Trinity: Reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotech, 29(7): 644
Guo Z. T., Peng S. Z., Hao Q. Z, Biscaye P. E., An Z. S., Liu T. S. 2004. Late Miocene-Pliocene development of Asian aridification as recorded in the red-earth formation in northern China. Glob Planet Chan, 41(3–4): 135–145
Guo X. G., Wang Y. Z. 2007. Partitioned Bayesian analysis, dispersal-vicariance analysis, and the biogeography of Chinese toad-headed lizards (Agamidae: Phrynocephalus): A re-uation. Mol Phylogen Evol, 45: 643–662.
Haas B. J., Papanicolaou A., Yassour M., Grabherr M., Philip D. B., Bowden J., Couger M. B., Eccles D., Li B., Lieber M., MacManes M. D., Ott M., Orvis J., Pochet N., Strozzi F., Weeks N., Westerman R., William T., Dewey C. N., Henschel R., LeDuc R. D., Friedman N., Regev A. 2013. De novo transcript sequence reconstruction from RNA-Seq using the Trinity platform for reference generation and analysis. Nat Protoc, 8(8): 1494
Hammond K. A., Szewczak J., Król E. 2011. Effects of altitude and temperature on organ phenotypic plasticity along an altitudinal gradient. J Exp Biol, 204(11): 1991–2000
Huey R. B. 1982. Temperature, physiology, and the ecology of reptiles. Biol Rep, 12: 25–91
Kingsolver J. G., Buckley L. B. 2017. Evolution of plasticity and adaptive responses to climate change along climate gradients. Proc R Soc B, 284: 20170386
Kort D. H., Mijnsbrugge K. V., Vandepitte K., Mergeay J., Ovaskainen O., Honnay O. 2016. Evolution, plasticity and evolving plasticity of phenology in the tree species Alnus glutinosa. J Evol Biol, 29: 253–264
Levis N. A., Serrato-Capuchina A., Pfennig D. W. 2017. Genetic accommodation in the wild: Evolution of gene expression plasticity during character displacement. J Evol Biol, 30: 1712–1723
Levis N. A., Pfennig D. W. 2019. How stabilizing selection and nongenetic inheritance combine to shape the evolution of phenotypic plasticity. J Evol Biol, 32: 706–716
Li W., Liang S., Wang H., Xin Y., Lu S., Tang X., Chen Q. 2016. The effects of chronic hypoxia on thermoregulation and metabolism in Phrynocephalus vlangalii. Asian Herpetol Res, 7(2): 103–111
Love M. I., Huber W., Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Geno Biol, 15: 550
Jayakumar A., Tai M. H., Huang W. Y., al-Feel W., Hsu M., Abu-Elheiga L., Chirala S. S., Wakil S. J. 1995. Human fatty acid synthase: properties and molecular cloning. Proc Nat Acad Sci USA, 92(19): 8695–8699
Jones B. M., Robinson G. E. 2018. Genetic accommodation and the role of ancestral plasticity in the evolution of insect eusociality. J Exp Biol, 221(23): jeb153163
Matzkin L. M., Watts T. D., Bitler B. G., Machado C. A., Markow T. A. 2006. Functional genomics of cactus host shifts in Drosophila mojavensis. Mol Ecol, 15: 4635–4643
Matzkin L. M. 2012. Population transcriptomics of cactus host shifts in Drosophila mojavensis. Mol Ecol, 21: 2428–2439
McCarthy J. D., Chen Y., Smyth K. G. 2012. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucl Acid Res, 40(10): 4288–4297
Moczek A. P., Sultan S., Foster S., Ledon-Rettig C., Dworkin I., Nijhout H. F., Abouheif E., Pfennig D. W. 2011. The role of developmental plasticity in evolutionary innovation. Proc R Soc B Biol Sci, 278: 2705–2713
Pigliucci M. 2006. Phenotypic plasticity and evolution by genetic assimilation. J Exp Biol, 209: 2362–2367
Refsnider J. M., Qian S. S., Streby H. M., Carter S. E., Clifton I. T., Siefker A. D., Vazquez T. K. 2018. Reciprocally transplanted lizards along an elevational gradient match light environment use of local lizards via phenotypic plasticity. Funct Ecol, 32(5): 1227–1236
Renn S. C. P., Schumer M. E. 2013. Genetic accommodation and behavioural evolution: insights from genomic studies. Anim Behav, 85: 1012–1022
Robinson M. D., McCarthy D. J., Smyth G. K. 2010. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1): 139–140
Rose M. R. 2001. Adaptation. 17–23. In Levin R. A. (Ed.), Encyclopedia of Biodiversity. San Diego: Academic Press
Scheinfeldt L. B., Tishkoff S. A. 2010. Living the high life: High-altitude adaptation. Geno Biol, 11: 133
Scoville A. G., Pfrender M. E. 2010. Phenotypic plasticity facilitates recurrent rapid adaptation to introduced predators. Proc Nat Acad Sci USA, 107: 4260–4263
Smith N. G. C., Eyre-Walker A. 2002. Adaptive protein evolution in Drosophila. Nature, 415: 1022–1024
Storz J. F., Scott G. R., Cheviron Z. A. 2010. Phenotypic plasticity and genetic adaptation to high altitude hypoxia in vertebrates. J Exp Biol, 213(24): 4125–4136
Sun Y. B., Fu T. T., Jin J. Q., Murphy R. W., Hillis D. M., Zhang Y. P., Che J. 2018. Species groups distributed across elevational gradients reveal convergent and continuous genetic adaptation to high elevations. Proc Nat Acad Sci USA, 115: E10634–E10641
Tang X., Xin Y., Wang H., Li W., Zhang Y., Liang S., He J., Wang N., Ma M., Chen Q. 2013. Metabolic characteristics and response to high altitude in Phrynocephalus erythrurus (Lacertilia: Agamidae), a lizard dwell at altitudes higher than any other living lizards in the world. PLoS One, 8: e71976
Toth A. L., Varala K., Newman T. C., Miguez F. E., Hutchison S. K., Willoughby D. A., Simons J. F., Egholm M., Hunt J. H., Hudson J. H., Robinson G. E. 2007. Wasp gene expression supports an evolutionary link between maternal behavior and eusociality. Science, 318: 441–444
Waddington C. H. 1953. Genetic assimilation of an acquired character. Evolution, 7: 118–126
Wang Z., Lu H. L., Ji X. 2014. Viviparity in high-altitude Phrynocephalus lizards is adaptive because embryos cannot fully develop without maternal thermoregulation. Oecologia, 174: 639–649
Yang W., Qi Y., Fu J. 2014. Exploring the genetic basis of adaptation to high elevations in reptiles: a comparative transcriptome analysis of two toad-headed agamas (genus Phrynocephalus). PLoS One, 9: e112218
Yang Y., Wang L., Han J., Tang X., Ma M., Wang K., Zhang X., Ren Q., Chen Q., Qiu Q. 2015. Comparative transcriptomic analysis revealed adaptation mechanism of Phrynocephalus erythrurus, the highest altitude lizard living in the Qinghai-Tibet Plateau. BMC Evol Biol, 15: 101
Yu G., Wang L. G., Han Y., He Q. Y. 2012. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS J Integrat Biol, 16(5): 284–287
Zhang W., Li N., Tang X., Liu N., Zhao W. 2018. Changes in intestinal microbiota across an altitudinal gradient in the lizard Phrynocephalus vlangalii. Ecol Evol, 8: 4695–4703
Zhao E. M., Zhao K. T., Zhou K. Y. 1999. Fauna Sinica, Reptilia Vol. 2: Squamata, Lacertilia. Beijing: Science Press


Last Update: 2021-09-25