Lianju YUAN,Maojun ZHONG and Wenbo LIAO.Age Structure of Two Species of Odorous Frogs (Odorrana margaretae and Odorrana grahami)[J].Asian Herpetological Research(AHR),2021,12(3):308-314.[doi:10.16373/j.cnki.ahr.210017]
Click Copy

Age Structure of Two Species of Odorous Frogs (Odorrana margaretae and Odorrana grahami)
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

2021 VoI.12 No.3
Research Field:
Publishing date:


Age Structure of Two Species of Odorous Frogs (Odorrana margaretae and Odorrana grahami)
Lianju YUAN1 Maojun ZHONG1 and Wenbo LIAO123*
1 Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, Sichuan, China
2 Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong 637009, Sichuan, China
3 Institute of Eco-adaptation in Amphibians and Reptiles, China West Normal University, Nanchong 637009, Sichuan, China
age structure body size odorous frogs skeletochronology
Variation in age structure and body size benefits are identified to understand the evolution of life history. Here, we estimated the age structure and body size of two species of odorous frogs (Odorrana margaretae and Odorrana grahami) by using skeletochronology. The ages at sexual maturity of O. grahami and O. margaretae in both sexes were 1 and 2 years, respectively. For both sexes, the maximum age observed in O. margaretae was six years. For O. grahami, the maximum age observed in males and females were 4 and 5 years, respectively. Males and females did not differ in mean age in the two species. The average body size of both species considerably differed between sexes, with females being larger than males. The body size of females was also larger than that of males when the effect of age was removed. We also found positive correlations between body size and age within each sex in O. margaretae, but only for female in O. grahami. The female-biased sexual size dimorphism of the two species suggested that fecundity selection for larger female size may increase the reproductive output.


Adams D. C., Glynne E., Kaliontzopoulou A. 2020. Interspecific allometry for sexual shape dimorphism: Macroevolution of multivariate sexual phenotypes with application to Rensch’s rule. Evolution, 74(9): 908–1922
Altun???k A., Eksilmez H. 2021. Age, growth and survival rate in two populations of Darevskia derjugini (Nikolsky, 1898) from different altitudes (Squamata: Sauria: Lacertidae). Anim Biol, DOI:?10.1163/15707563-bja10025
Andersson M. 1994. Sexual Selection. Princeton: Princeton University Press
Biek R., Funk W. C., Maxell B. A., Mills L. S. 2002. What is missing in amphibian decline research: Insights from ecological sensitivity analysis. Conserv Biol, 16(3): 728–734
Castanet J., Smirina E. 1990. Introduction to the skeletochronological method in amphibians and reptiles. Ann de Sci Nat Zool (Paris), 11(4): 191–196
Charlesworth B. 1980. Evolution in Age Structured Populations. Cambridge: Cambridge University Press
Chen W., Lu X. 2011. Age and body size of Rana amurensis from northeastern China. Curr Zool, 57(6): 781–784
Cherry M. I., Francillon M. H. 1992. Body size, age and reproduction in the leopard toad, Bufo pardalis. J Zool, 228(1): 41–50
De Lisle S. P., Rowe L. 2013. Correlated evolution of allometry and sexual dimorphism across higher taxa. Am Nat, 182(5): 630–639
Esteban M., Paris M. G., Castanet J. 1996. Use of bone histology in estimating the age of frogs (Rana perezi) from a warm temperate climate area. Can J Zool, 74(4): 1914–1921
Fairbairn D. J. 1997. Allometry for sexual size dimorphism: pattern and process in the coevolution of body size in males and females. Ann Rev Ecol Syst, 28: 659–687
Fei L., Ye C. Y. 2001. The Colour Handbook of Amphibians of Sichuan. Beijing: China Forestry Publishing House
Gibbons M. M., McCarthy T. K. 1984. Growth, maturation and survival of frogs Rana temporaria. Ecography, 7(4): 419–427
Green D. M. 2003. The ecology of extinction: population fluctuation and decline in amphibians. Biol Conserv, 111(3): 331–343
Guarino F. M., Erismis U. C. 2008. Age determination and growth by skeletochronology of Rana holtzi, an endemic frog from Turkey. Ital J Zool, 73(3): 237–242
Guarino F. M., Lunardi S., Carlomagno M., Mazzotti S. 2003. A skeletochronological study of growth, longevity and age at sexual maturity in a population of Rana latastei Boulenger, 1879 (Amphibia, Anura). J Biosci, 28(6): 775–782
Hemelaar A. S. M., Van Gelder J. J. 1980. Annual growth rings in phalanges of Bufo bufo (Anura, Amphibia) from the Netherlands and their use for age determination. Nether J Zool, 30(2): 129–135
Huang Y., Wu X., Li Y. H., Liao W. B. 2014. Global warming, body size and conservation in a Qinghai-Tibet Plateau lizard. Herpetol J, 24(3): 161–165
Khonsue W., Matsui M., Misawa Y. 2000. Age determination by skeletochronology of Rana nigrovittata, a frog from tropical forest of Thailand. Zool Sci, 17(2): 253–257
Kumbar S. M., Pancharatna K. 2001. Occurrence of growth marks in the cross section of phalanges and long bones of limbs in tropical anurans. Herpetol Rev, 32(2): 165–167
Kyriakopoulou-Sklavounou P., Stylianou P., Tsiora A. 2008. A skeletochronological study of age, growth and longevity in a population of the frog Rana ridibunda from southern Europe. Zoology, 111(1): 30–36
Lai Y. C., Lee T. H., Kam Y. C. 2005. A skeletochronological study on a subtropical, riparian ranid (Rana swinhoana) from different elevations in Taiwan. Zool Sci, 22(6): 653–658
Leclair Jr R., Castanet J. 1987. A skeletochronological assessment of age and growth in the frog Rana pipiens Schreber (Amphibia, Anura) from south western Quebec. Copeia, 1987(2): 361–369
Leclair R., Laurin G. 1996. Growth and body size in populations of mink frogs Rana septentrionalis from two latitudes. Ecography, 19(3): 296–304
Li S. T., Wu X., Li D. Y., Lou S. L., Mi Z. P., Liao W. B. 2013. Body size variation of Odorous Frog (Odorrana grahami) across altitudinal gradients. Herpetol J, 23(3): 187–192
Liao W. B. 2013. Evolution of sexual size dimorphism in a frog obeys the inverse of Rensch’s rule. Evol Biol, 40(2): 293–299
Liao W. B., Liu W. C., Meril? J. 2015. Andrew meets Rensch: Sexual size dimorphism and the inverse of Rensch’s rule in Andrew’s toad (Bufo andrewsi). Oecologia, 177(2): 389–399
Liao W. B., Lu X. 2010. Age structure and body size of the Chuanxi tree frog Hyla annectans chuanxiensis from two different elevations in Sichuan (China). Zool Anz, 248(4): 255–263
Liao W. B., Lu X. 2011. Variation in body size, age and growth in the Omei Treefrog (Rhacophorus omeimontis) along an altitudinal gradient in western China. Ethol Ecol Evol, 23(3): 248–261
Liao W. B., Lu X. 2012. Adult body size = f (initial size + growth rate × age): explaining the proximate cause of Bergman’s cline in a toad along altitudinal gradients. Evol Ecol, 26(3): 579–590
Liao W. B., Lu X., Shen Y. W., Hu J. C. 2011. Age structure and body size of two populations of the rice frog Rana limnocharis from different altitudes. Ital J Zool, 78(2): 215–228
Liao W. B., Chen W. 2012. Inverse Rensch-rule in a frog with female-biased sexual size dimorphism. Naturwissenschaften, 99(2): 427–431
Lu X., Li B., Liang J. J. 2006. Comparative demography of a temperate anuran, Rana chensinensis, along a relatively fine altitudinal gradient. Can J Zool, 84(12): 1789–1795
Matthews K. R., Miaud C. 2007. A skeletochronological study of the age structure, growth, and longevity of the mountain yellow-legged frog, Rana muscosa, in the Sierra Nevada, California. Copeia, 2007(4): 986–993
Miaud C., Guyétant R., Elmberg J. 1999. Variations in life-history traits in the common frog Rana temporaria (Amphibia: Anura): a literature review and new data from the French Alps. J Zool, 249(1): 61–73
Monnet J. M., Cherry M. I. 2002. Sexual size dimorphism in anurans. Proc R Soc B, 269(1507): 2301–2307
Morrison C., Hero J. M. 2003. Geographic variation in life-history characteristics of amphibians: A review. J Anim Ecol, 72(2): 270–279
Morrison C., Hero J. M., Browning J. 2004. Altitudinal variation in the age at maturity, longevity, and reproductive lifespan anurans in subtropical Queensland. Herpetologica, 60(1): 34–44
Rozenblut B., Ogielska M. 2005. Development and growth of long bones in European water frogs (Amphibia: Anura: Ranidae), with remarks on age determination. J Morphol, 265(3): 304–317
Ryser J. 1996. Comparative life histories of a low- and a high-elevation population of the common frog Rana temporaria. Amphibia-Reptilia, 17(3): 183–195
Shine R. 1979. Sexual selection and sexual dimorphism in the amphibia. Copeia, 1979(2): 297–306
Trivers R. L. 1974. Parent–offspring conflict. Am Zool, 14(2): 249–264
Wells K. D. 2007. The Ecology and Behaviour of Amphibians. Chicago: University of Chicago Press
Xiong J. L., Gou J. P., Huang Y., Zhang B. W., Ren H. T., Pan T. 2020. Age and body size of the Shangcheng stout salamander Pachyhynobius shangchengensis (Caudata: Hynobiidae) from southeastern China. Asian Herpetol Res, 11(3): 219–224
Yu X., Zhong M. J., Li D. Y., Jin L., Liao W. B., Kotrschal A. 2018. Large-brained frogs mature later and live longer. Evolution, 72(5): 1174–1183
Zhang L. X., Lu X. 2013. Sexual size dimorphism in anurans: ontogenetic determination revealed by an across-species comparison. Evol Biol, 40(1): 84–91
Zhang L. X., Sheng Y. S., Yuan X. Y., Zhong X. T., Chen X. H. 2021. A skeletochronological estimation of age structure of a population of the paddy frog, Fejervarya multistriata, from the central east of China. Anim Biol, 71(1): 103–113
Zhong M. J, Yu X., Liao W. B. 2018. A review for life-history traits variation in frogs especially for anurans in China. Asian Herpetol Res, 9(3): 165–174


Last Update: 2021-09-25