Siqi WANG,Chunxia XU,Jiaqi ZHANG,et al.Phylogeny and Biogeography of Common Toad (Bufo bufo) in Xinjiang, China[J].Asian Herpetological Research(AHR),2021,12(2):201-212.[doi:10.16373/j.cnki.ahr.200061]
Click Copy

Phylogeny and Biogeography of Common Toad (Bufo bufo) in Xinjiang, China
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

2021 VoI.12 No.2
Research Field:
Publishing date:


Phylogeny and Biogeography of Common Toad (Bufo bufo) in Xinjiang, China
Siqi WANG12 Chunxia XU12 Jiaqi ZHANG12 Supen WANG1 Xuan LIU1 Xuejiao YANG12 and Yiming LI12*
1 Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
distribution genetic distance genetic structure haplotype mitochondrial DNA phylogenetic tree
The common toad, Bufo bufo (Linnaeus, 1758), is widely distributed in Europe and parts of Africa. Previous studies of the genetic relationships among B. bufo populations have not included Asian populations. Here, we investigated the phylogenetic relationships of B. bufo , including a population from Xinjiang, China, using 722 bp of the mitochondrial cytochrome b sequence and identified six subclades and 85 haplotypes in populations from 22 countries. Phylogenetic analyses and pedigree differentiation revealed that the subclade containing the Xinjiang population has undergone a relatively recent expansion. Combining our results with those of previous studies, we found that the common toad population of Xinjiang, China, belongs to the European-Caucasian lineage and that its closest relatives based on phylogenetic relationships were eastern European populations. Our research contributes to expanding knowledge of the geographic distribution of B. bufo and illuminates the lineage and genetic relationships of the B. bufo population in Xinjiang, China. Future research should continue to update the geographic distribution of B. bufo and complete a genetic investigation of the full range of this species.


Arntzen J. W., Recuero E., Canestrelli D., Martinez-Solano I. 2013. How complex is the Bufo bufo species group? Mol Phylogenet Evol, 69(3): 1203–1208
Bandelt H. J., Forster P., Rohl R. 1999. Median-Joining Networks for Inferring Intraspecific Phylogenies. Mol Biol Evol, 16(1): 37–48
Blair C., Jimenez Arcos V. H., Mendez de la Cruz F. R., Murphy R. W. 2013. Landscape genetics of leaf-toed geckos in the tropical dry forest of northern Mexico. PLoS One, 8(2): e57433
Clark P. U., Dyke A. S., Shakun J. D., Carlson A. E., Clark J., Wohlfarth B., Mitrovica J. X., Hostetler S. W., McCabe A. M. 2009. The last glacial maximum. Science, 325: 710–714
Cossu I. M., Frau S., Delfino M., Chiodi A., Corti C., Bellati A. 2018. First report of Bufo bufo (Linnaeus, 1758) from Sardinia (Italy). Acta Herpetol, 13(1): 43–49
Dubey S., Sumner J., Pike D. A., Keogh J. S., Webb J. K., Shine R. 2011. Genetic connectivity among populations of an endangered snake species from Southeastern Australia (Hoplocephalus bungaroides, Elapidae). Ecol Evol, 1(2): 218–227
Excoffier L., Lischer H. E. L. 2010. Arlequin suite Ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour, 10(3): 564–567
Fei L., Ye C., Jiang J. P. 2012. Colored atlas of chinese amphibians and their distributions. Chengdu: Sichuan Publishing House of Science and Technology
Felsenstein J. 1985. ConWdence limits on phylogenies: An approach using the bootstrap. Evolution, 39: 783–791
Ferguson J. W. H. 2002. On the use of genetic divergence for identifying species. Biol J Linn Soc, 75(4): 509–516
Fu Y. X., Li W. H. 1993. Statistical tests of neutrality of mutations. Genetics, 133: 693–709
Garcia-Porta J., Litvinchuk S. N., Crochet P. A., Romano A., Geniez P. H., Lo-Valvo M., Lymberakis P., Carranza S. 2012. Molecular phylogenetics and historical biogeography of the west-palearctic common toads (Bufo bufo species complex). Mol Phylogenet Evol, 63(1): 113–130
Gasse F. 2000. Hydrological changes in the African tropics since the Last Glacial Maximum. Quat Sci Rev, 19:189–211
Grant W. S., Bowen B. W. 1998. Shallow population histories in deep evolutionary lineages of marine fishes: Insights from sardines and anchovies and lessons for conservation. J Hered, 89(5): 415–426
Hall T. A. 1999. Bioedit: a user friendly biological sequence aligment editor and analysis program for Windows 95/98/NT. Nucl Acid Symp Ser, 41: 95–98
Harpending H. C. 1994. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol, 66(4): 591–600
Hewitt G. M. 1996. Some genetic consequences of ice ages, and their role, in divergence and speciation. Biol J Linn Soc, 58: 247–276
Hewitt G. 2000. The genetic legacy of the Quaternary ice ages. Nature, 405: 907–913
IUCN. 2020. The IUCN Red List of Threatened Species. Version 2020-1.
Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol, 16: 111–120
Kumar S., Stecher G., Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 33(7): 1870–1874
Lüscher B., Grossenbacher K., Scholl A. 2001. Genetic differentiation of the common toad ( Bufo bufo) in the Swiss Alps. Amphibia-Reptilia, 22(2): 141–154
Nei M., Tajima F. 1981. DNA polymorphism detectable by restriction endonuclease. Genetics, 97: 145–163
Nei M. 1987. Molecular evolutionary genetics. Columbia University Press
?zdemir N., Dursun C., ?züm N., Kutrup B., Gül S. 2020. Taxonomic assessment and distribution of common toads?(Bufo?bufo?and B. verrucosissimus) in Turkey based?on?morphological and molecular data. Amphibia-Reptilia, 41(3): 399–411
Palumbi S., Martin A., Romano S., McMillan W. O., Stice L., Grabowski G. 1991. The simple fool’s guide to PCR. Version 2. In: Department of Zoology and Kewalo Marine Laboratory. University of Hawaii, USA
Ramos-Onsins S. E., Rozas J. 2002. Statistical properties of new neutrality tests against population growth. Mol Biol Evol, 19(12): 2092–2100
Recuero E., Canestrelli D., Voros J., Szabo K., Poyarkov N. A., Arntzen J. W., Crnobrnja-Isailovic J., Kidov A. A., Cogalniceanu D., Caputo F. P., Nascetti G., Martinez-Solano I. 2012. Multilocus species tree analyses resolve the radiation of the widespread Bufo bufo species group (Anura, Bufonidae). Mol Phylog Evol, 62(1): 71–86
Ronquist F., Huelsenbeck J. P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12): 1572–1574
Rozas J., Ferrer-Mata A., Sánchez-DelBarrio J. C., Guirao-Rico S., Librado P., Ramos-Onsins S. E., Sánchez-Gracia A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large datasets. Mol Biol Evol, 34(12): 3299–3302
Rzhetsky A., Nei M. 1992. A simple method for estimating and testing minimum evolution trees. Mol Biol Evol, 9: 945–967
Saitou N., Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol, 4: 406–425
Schneider S., Excoffier L. 1999. Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates among sites: application to human mitochondrial DNA. Genetics, 152(3): 1079–1089
Shi L., Zhou Y. H., Yuan H. 2005. A new record of toad species from China—Bufo bufo Linnaeus. Acta Zootax Sin, 30(2): 444–445
Sillero N., Campos J. C., Bonardi A., Corti C., Creemers R., Crochet P., Isailovi? J. C., Deno?l M., Ficetola G. F., Gon?alves J., Kuzmin S., Lymberakis P., Pous P., Rodríguez A., Sindaco R., Speybroeck J., Toxopeus B., Vieites D. R., Vences M. 2014. Updated distribution and biogeography of amphibians and reptiles of Europe. Amphibia-Reptilia, 35(1): 1–31
Slatkin M., Hudson R. R. 1991. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics, 129(2): 555–562
Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123: 585–595
Thompson J. D., Higgins D. G., Gibson T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res, 22(22): 4673–4680
Tuncay S. S., Roth S., Bardakci F., Jehle R. 2018. Genetic diversity of common toads(Bufo bufo) along the Norwegian coast: Disjunct distribution of locally dominant haplotypes. Herpetol J, 28: 127–133
Wang X., Ai S., Yuan L., Zhang Y. 2006. The progress in the research of Xinjiang amphibian animals. Journal of Xinjiang Normal University (Natural Sciences Edition), 25(2): 50–53 (In Chinese)
Weerachai S., Sutthira S., Takeshi A., Kamonwan J., Warayutt P., Watee K., Wittaya T., Warong S., Trevor N. P., Chairat T. 2019. Genetic structure of the red-spotted tokay gecko, Gekko gecko (Linnaeus, 1758) (Squamata: Gekkonidae) from Mainland Southeast Asia. Asian Herpetol Res, 10(2): 69–78
Weir B. S., Cockerham C. C. 1984. Estimating F-statistics for the analysis of population structure. Evolution, 38: 1358–1370


Last Update: 2021-06-25