Fang LU,Yezhong TANG and Qin CHEN.Perception and Recognition of Vocalization in Anuran Mate Choice[J].Asian Herpetological Research(AHR),2020,11(4):394-400.[doi:10.16373/j.cnki.ahr.200074]
Click Copy

Perception and Recognition of Vocalization in Anuran Mate Choice
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

Issue:
2020 VoI.11 No.4
Page:
394-400
Research Field:
Publishing date:
2020-12-25

Info

Title:
Perception and Recognition of Vocalization in Anuran Mate Choice
Author(s):
Fang LU1 2 Yezhong TANG2 and Qin CHEN2*
1 Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
2
Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
Keywords:
anuran adaptive mechanism evolution phonotaxis vocal communication
PACS:
-
DOI:
10.16373/j.cnki.ahr.200074
Abstract:
Vocal communications in frogs and toads have been highly diversified and become a hot topic in the fields of herpetology, ecology, and behavioral neuroscience. The present short review summarized several interesting phenomena of vocal communication found mainly in anurans that might contribute to the individual identification of mates or rivals, including call matching, aggressive signaling, acoustic complexity, signal exaggeration, the first note effect and left hemisphere dominance. Investigations on the perception and recognition of vocal communications will facilitate our comprehension of the adaptive mechanisms and evolutionary paths of anuran signaling systems. We proposed here that comparative studies on acoustic signal structures, codes of sender status, and auditory neural responses based on phylogenetic relationships across species can highlight further the evolutionary trajectory in anurans.

References:

Akre K. L., Farris H. E., Lea A. M., Page R. A., Ryan M. J. 2011. Signal perception in frogs and bats and the evolution of mating signals. Science, 333: 751–752
Akre K. L., Ryan M. J. 2010. Complexity increases working memory for mating signals. Curr Biol, 20: 502–505
Akre K. L., Ryan M. J. 2011. Female túngara frogs elicit more complex mating signals from males. Behav Ecol, 22: 846–853
Anderson M. B. 1994. Sexual selection. Princeton, U.S.A.: Princeton University Press
Bard K. M., Wells K. D. 1987. Vocal communication in a neotropical treefrog, Hyla ebraccata: Responses of females to advertisement and aggressive calls. Behaviour, 101: 200–210
Beecher M. D., Petersen M. R., Zoloth S. R., Moody D. B., Stebbins W. C. 1979. Perception of conspecific vocalizations by Japanese macaques. Brain Behav Evol, 16: 443–460
Berglund A., Bisazza A., Pilastro A. 1996. Armaments and ornaments: An evolutionary explanation of traits of dual utility. Biol J Linn Soc, 58: 385–399
B?ye M., Güntürkün O., Vauclair J. 2005. Right ear advantage for conspecific calls in adults and subadults, but not infants, California sea lions (Zalophus californianus): hemispheric specialization for communication? Eur J Neurosci, 21: 1727–1732
Bregman A. S. 2017. Asking the “what for” question in auditory perception. 99–118. In Kubovy M., Pomerantz J. R. (Eds.), Perceptual organization. New York: Routledge
Brittan-Powell E. F., Christensen-Dalsgaard J., Tang Y. Z., Carr C., Dooling R. J. 2010. The auditory brainstem response in two lizard species. J Acoust Soc Am, 128: 787–794
Bush S. L., Schul J. 2006. Pulse-rate recognition in an insect: evidence of a role for oscillatory neurons. J Comp Physiol A, 192: 113–121
Chen J. F., Jono T., Cui J. G., Yue X. Z., Tang Y. Z. 2016. The acoustic properties of low intensity vocalizations match hearing sensitivity in the webbed-toed gecko, Gekko subpalmatus. PLoS ONE, 11: e0146677
Chen Q., Cui J. G., Fang G. Z., Brauth S. E., Tang Y. Z. 2011. Acoustic analysis of the advertisement calls of the music frog, Babina daunchina. J Herpetol, 45: 406–417
Crawford J. D. 1997. Feature-detecting auditory neurons in the brain of a sound-producing fish. J Comp Physiol A, 180: 439–450
Cui J. G., Song X. W., Zhu B. C., Fang G. Z., Tang Y. Z., Ryan M. J. 2016a. Receiver discriminability drives the evolution of complex sexual signals by sexual selection. Evolution, 70: 922–927
Cui J. G., Wang J. C., Fang G. Z., Song X. W., Brauth S. E., Tang Y. Z. 2016b. Coevolution of male and female response preferences to sexual signals in Music frogs. Asian Herpetol Res, 7: 87–95
Dawson B., Ryan M. J. 2009. Early experience leads to changes in the advertisement calls of male Physalaemus pustulosus. Copeia, 2009: 221–226
Edwards C. J., Alder T. B., Rose G. J. 2002. Auditory midbrain neurons that count. Nat Neurosci, 5: 934–936
Edwards C. J., Leary C. J., Rose G. J. 2008. Mechanisms of long-interval selectivity in midbrain auditory neurons: roles of excitation, inhibition, and plasticity. J Neurophysiol, 100: 3407–3416
Fan Y. Z., Yue X. Z., Xue F., Cui J. G., Brauth S. E., Tang Y. Z., Fang G. Z. 2018. Auditory perception exhibits sexual dimorphism and left telencephalic dominance in Xenopus laevis. Biol Open, 7: bio035956
Fang G. Z., Jiang F., Yang P., Cui J. G., Brauth S. E., Tang Y. Z. 2014. Male vocal competition is dynamic and strongly affected by social contexts in music frogs. Anim Cogn, 17: 483–494
Fang G. Z., Yang P., Xue F., Cui J. G., Brauth S. E., Tang Y. Z. 2015. Sound classification and call discrimination are decoded in order as revealed by event-related potential components in frogs. Brain Behav Evol, 86: 232–245
Fang K., Zhang B. W., Brauth S. E., Tang Y. Z., Fang G. Z. 2019. The first call note of the Anhui tree frog (Rhacophorus zhoukaiya) is acoustically suited for enabling individual recognition. Bioacoustics, 28: 155–176
Feinberg D. R., Jones B. C., Armstrong M. M. 2018. Sensory exploitation, sexual dimorphism, and human voice pitch. Trends Ecol Evol, 33: 901–903
Feng A. S., Hall J. C., Gooler D. M. 1990. Neural basis of sound pattern recognition in anurans. Prog Neurobiol, 34: 313–329
Garcia M., Favaro L. 2017. Animal vocal communication: function, structures and production mechanisms. Curr Zool, 63: 417–419
Gerhardt H. C. 2001. Acoustic communication in two groups of closely related treefrogs. Adv Stud Behav, 30: 99–167
Gerhardt H. C., Huber F. 2002. Acoustic communication in insects and anurans: common problems and diverse solutions. Chicago, U.S.A.: University of Chicago Press
Gomes D. G., Halfwerk W., Taylor R. C., Ryan M. J., Page R. A. 2017. Multimodal weighting differences by bats and their prey: Probing natural selection pressures on sexually selected traits. Anim Behav, 134: 99–102
Gooler D. M., Feng A. S. 1992. Temporal coding in the frog auditory midbrain: The influence of duration and rise-fall time on the processing of complex amplitude-modulated stimuli. J Neurophysiol, 67: 1–22
Groth J. G. 1993. Call matching and positive assortative mating in red crossbills. The Auk, 110: 398–401
Halliday T. 2016. The book of frogs: A life-size guide to six hundred species from around the world. Chicago, USA: University of Chicago Press
Halpern M. E., Güntürkün O., Hopkins W. D., Rogers L. J. 2005. Lateralization of the vertebrate brain: taking the side of model systems. J Neurosci, 25: 10351–10357
Hausberger M., Cousillas H., Meter A., Karino G., George I., Lemasson A., Blois-Heulin C. 2019. A crucial role of attention in lateralisation of soundprocessing? Symmetry, 11: 48–65
Hebets E. A., Papaj D. R. 2005. Complex signal function: developing a framework of testable hypotheses. Behav Ecol Sociobiol, 57: 197–214
Hemingway C. T., Lea A. M., Page R. A., Ryan M. J. 2019. Effects of information load on response times in frogs and bats: Mate choice vs. Prey choice. Behav Ecol Sociobiol, 73: 111
Jehle R., Arak A. 1998. Graded call variation in the Asian cricket frog Rana nicobariensis. Bioacoustics, 9: 35–48
Johnston R. E. 2003. Chemical communication in rodents: From pheromones to individual recognition. J Mammal, 84: 1141–1162
Keddy-Hector A. C. 1992. Mate choice in non-human primates. Am Zool, 32: 62–70
Knight K. 2015. Music frogs listen for each other with right ear. J Exp Biol, 218: 649
Littlejohn M. J. 2001. Patterns of differentiation in temporal properties of acoustic signals of anurans. 102–120. In Ryan M. J. (Ed.), Anuran communication. Washington (DC): Smithsonian Institution Press
Littlejohn M. J., Harrison P. A. 1985. The functional significance of the diphasic advertisement call of Geocrinia victoriana (Anura: Leptodactylidae). Behav Ecol Sociobiol, 16: 363–373
Liu Y. S., Fan Y. Z., Xue F., Yue X. Z., Brauth S. E., Tang Y. Z., Fang G. Z. 2016. Changes in electroencephalogram approximate entropy reflect auditory processing and functional complexity in frogs. Asian Herpetol Res, 7: 180–190
Lorenz K. 1963. Zur Naturgeschichte der Agression. Deutscher Taschenbuch Verlag GmbH & Co. KG, München
Marshall V. T., Humfeld S. C., Bee M. A. 2003. Plasticity of aggressive signalling and its evolution in male spring peepers, Pseudacris crucifer. Anim Behav, 65: 1223–1234
Mason N. A., Burns K. J., Tobias J. A., Claramunt S., Seddon N., Derryberry E. P. 2017. Song evolution, speciation, and vocal learning in passerine birds. Evolution, 71: 786–796
McClelland B. E., Wilczynski W., Ryan M. J. 1998. Intraspecific variation in laryngeal and ear morphology in male cricket frogs (Acris crepitans). Biol J Linn Soc, 63: 51-67
Narins P. M., Capranica R. R. 1978. Communicative significance of the two-note call of the treefrog Eleutherodactylus coqui. J Comp Physiol, 127: 1–9
Owen P. C. 2003. The structure, function, and evolution of aggressive signals in anuran amphibians. Ph.D. Thesis. University of Connecticut
Owen P. C., Gordon N. M. 2005. The effect of perceived intruder proximity and resident body size on the aggressive responses of male green frogs, Rana clamitans (Anura: Ranidae). Behav Ecol Sociobiol, 58: 446–455
Page R. A., Ryan M. J. 2008. The effect of signal complexity on localization performance in bats that localize frog calls. Anim Behav, 76: 761–769
Penna M., Lin W., Feng A. S. 1997. Temporal selectivity for complex signals by single neurons in the torus semicircularis of Pleurodema thaul (Amphibia: Leptodactylidae). J Comp Physiol A, 180: 313–328
Penna M., Lin W., Feng A. S. 2001. Temporal selectivity by single neurons in the torus semicircularis of Batrachyla antartandica (Amphibia: Leptodactylidae). J Comp Physiol A, 187: 901–912
Powell H. R., Parker G. J., Alexander D. C., Symms M. R., Boulby P. A., Wheeler-Kingshott C. A., Barker G. J., Noppeney U., Koepp M. J., Duncan J. S. 2006. Hemispheric asymmetries in language-related pathways: A combined functional MRI and tractography study. Neuroimage, 32: 388–399
Rand A. S., Ryan M. J. 1981. The adaptive significance of a complex vocal repertoire in a neotropical frog. Zeitschrift für Tierpsychologie, 57: 209–214
Robinson G. E., Barron A. B. 2017. Epigenetics and the evolution of instincts. Science, 356: 26–27
Rogers L. J., Zucca P., Vallortigara G. 2004. Advantages of having a lateralized brain. P Roy Soc Lond B Bio, 271: S420–S422
Rose G. J., Leary C. J., Edwards C. J. 2011. Interval-counting neurons in the anuran auditory midbrain: factors underlying diversity of interval tuning. J Comp Physiol A, 197: 97–108
Ryan M. J. 1985. The túngara frog: A study in sexual selection and communication. Chicago, USA: University of Chicago Press
Ryan M. J. 1988. Coevolution of sender and receiver: effect on local mate preferecnce in cricket frogs. Science, 240: 1786
Ryan M. J. 1990. Sexual selection, sensory systems and sensory exploitation. 157–195. In: Douglas F., Janis A. (Eds.), Oxford surveys in evolutionary biology, Vol. 7. Oxford: Oxford University Press
Ryan M. J. 1998. Sexual selection, receiver biases, and the evolution of sex differences. Science, 281: 1999–2003
Ryan M. J. 2009. Communication in frogs and toads. 1159–1166. In: Squire L. R. (Ed.), Encyclopedia of Neuroscience, Vol. 2. Oxford: Academic Press
Ryan M. J. 2013. The importance of integrative biology to sexual selection and communication. 233-255. In Stegmann U. (Ed.), Animal communication theory: information and influence. Cambridge: Cambridge University Press
Ryan M. J., Akre K. L., Kirkpatrick M. 2009. Cognitive mate choice. Cogn Ecol, 2: 137–155
Ryan M. J., Cummings M. E. 2013. Perceptual biases and mate choice. Annu Rev Ecol Evol Syst, 44: 437–459
Ryan M. J., Fox J. H., Wilczynski W., Rand A. S. 1990. Sexual selection for sensory exploitation in the frog Physalaemus pustulosus. Nature, 343: 66
Ryan M. J., Tuttle M. D., Rand A. S. 1982. Bat predation and sexual advertisement in a neotropical anuran. Am Nat, 119: 136–139
Schwartz J. J., Wells K. D. 1984. Vocal behavior of the neotropical treefrog Hyla phlebodes. Herpetologica: 452–463
Searcy W. A., Nowicki S. 2005. The evolution of animal communication: reliability and deception in signaling systems. Princeton, U.S.A.: Princeton University Press
Shahin A., Roberts L. E., Pantev C., Trainor L. J., Ross B. 2005. Modulation of P2 auditory-evoked responses by the spectral complexity of musical sounds. Neuroreport, 16: 1781
Sininger Y. S., Bhatara A. 2012. Laterality of basic auditory perception. Laterality, 17: 129–149
Snedden W. A., Greenfield D. M. 1998. Females prefer leading males: Relative call timing and sexual selection in katydid choruses. Anim Behav, 56: 1091–1098
Steffen J., Grafe T. U., Stoll C. 2000. Vocal repertoire and effect of advertisement call intensity on calling behaviour in the West African tree frog, Leptopelis viridis. Amphibia-Reptilia, 21: 13–23
Tervaniemi M., Hugdahl K. 2003. Lateralization of auditory-cortex functions. Brain Res Rev, 43: 231–246
Wang J. C., Cui J. G., Shi H. T., Brauth S. E., Tang Y. Z. 2012. Effects of body size and environmental factors on the acoustic structure and temporal rhythm of calls in Rhacophorus dennysi. Asian Herpetol Res, 3: 205–212
Wells K. D. 1980. Social behavior and communication of a dendrobatid frog (Colostethus trinitatis). Herpetologica: 189–199
Wells K. D. 1988. The effect of social interactions on anuran vocal behavior. 433–454. In Wells K. D., Fritzsch B., Ryan M. J., Wilczynski W., Hetherington T., Walkowiak W. (Eds.), The evolution of the amphibian auditory system. New York: John Wiley and Sons
Wells K. D. 1989. Vocal communication in a neotropical treefrog, Hyla ebraccata: Responses of males to graded aggressive calls. Copeia, 1989: 461–466
Wells K. D., Schwartz J. J. 1984. Vocal communication in a neotropical treefrog, Hyla ebraccata: aggressive calls. Behaviour, 91: 128–145
Wells K. D., Schwartz J. J. 2007. The behavioral ecology of anuran communication. 44–86. In Narins P. M., Feng A. S., Fay R. R. (Eds.), Hearing and sound communication in amphibians, Vol. 28. New York: Springer Science & Business Media
Xue F., Fang G. Z., Yang P., Zhao E. M., Brauth S. E., Tang Y. Z. 2015. The biological significance of acoustic stimuli determines ear preference in the music frog. J Exp Biol, 218: 740–747
Xue F., Fang G. Z., Yue X. Z., Zhao E. M., Brauth S. E., Tang Y. Z. 2016. A lateralized functional auditory network is involved in anuran sexual selection. J Biosci (Bangalore), 41: 713–726
Yanagihara S., Yazaki-Sugiyama Y. 2016. Auditory experience-dependent cortical circuit shaping for memory formation in bird song learning. Nat Commun, 7: 11946
Yang Y., Zhu B. C., Wang J. C., Brauth S. E., Tang Y. Z., Cui J. G. 2019. A test of the matched filter hypothesis in two sympatric frogs, Chiromantis doriae and Feihyla vittata. Bioacoustics, 28: 488–502
Yu X., Peng Y., Aowphol A., Ding L., Brauth S. E., Tang Y. Z. 2011. Geographic variation in the advertisement calls of Gekko gecko in relation to variations in morphological features: implications for regional population differentiation. Ethol Ecol Evol, 23: 211–228
Yue X. Z., Fan Y. Z., Xue F., Brauth S. E., Tang Y. Z., Fang G. Z. 2017. The first call note plays a crucial role in frog vocal communication. Sci Rep, 7: 10128
Zhang D., Cui J. G., Tang Y. Z. 2012. Plasticity of peripheral auditory frequency sensitivity in Emei music frog. PLoS ONE, 7: e45792
Zhao L. H., Wang J. C., Yang Y., Zhu B. C., Brauth S. E., Tang Y. Z., Cui J. G. 2017. An exception to the matched filter hypothesis: A mismatch of male call frequency and female best hearing frequency in a torrent frog. Ecol Evol, 7: 419–428
Zhu B. C., Wang J. C., Brauth S. E., Tang Y. Z., Cui J. G. 2017. The spectral structure of vocalizations match hearing sensitivity but imprecisely in Philautus odontotarsus. Bioacoustics, 26: 121–134
Zucca P., Sovrano V. A. 2008. Animal lateralization and social recognition: quails use their left visual hemifield when approaching a companion and their right visual hemifield when approaching a stranger. Cortex, 44: 13–20

Memo

Memo:
-
Last Update: 2020-12-25