Xinxin ZHU,Zhongyi YAO and Yin QI.Tail Display Intensity is Restricted by Food Availability in an Asian Agamid Lizard (Phrynocephalus vlangalii)[J].Asian Herpetological Research(AHR),2020,11(3):240-248.[doi:10.16373/j.cnki.ahr.190070]
Click Copy

Tail Display Intensity is Restricted by Food Availability in an Asian Agamid Lizard (Phrynocephalus vlangalii)
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

2020 VoI.11 No.3
Research Field:
Publishing date:


Tail Display Intensity is Restricted by Food Availability in an Asian Agamid Lizard (Phrynocephalus vlangalii)
Xinxin ZHU12 Zhongyi YAO12 and Yin QI1*
1 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
2 University of Chinese Academy of Sciences, Beijing 101409, China
animal communication energy limitation lizard signal variation tail display
To ascertain the function of signals, we have to first uncover the reasons behind signal variation. There are several potential driving forces, including background noise, predation cost, receiver perception, and energy limitations. The energy limitation hypothesis assumes that individuals trade off signal intensity and energy expenditure according to resource condition, while variation of signal intensity likely associates with food availability. This hypothesis has been evidenced by a great number of researches on vocal signals, but no studies uated the influence of food availability on motion visual signal in lizards. Here we used an Asian agamid lizard Phrynocephalus vlangalii and examined the effect of food availability on tail display intensity. We designed two food restriction treatments as well as a nature control treatment, and quantified individual tail display speed and display duration under different food availability conditions. Consistent with our prediction, our results showed that males significantly reduced their average tail display speed and maximum display speed in both food restriction treatments when compared to nature control condition. Therefore, our study provides direct evidence that lizards would trade off their display intensity according to the food condition, suggesting tail display is energetically costly and likely provides honest information on individual body condition and resource hold potential.


Aspey P. W., Lustick I. S. 1983. Behavioral Energetics: The Cost of Survival in Vertebrates. America: Ohio State University Press
Atherton P. J., Smith K. 2012. Muscle protein synthesis in response to nutrition and exercise. J Physiol, 590: 49–57
Barnett C. A., Briskie J. V. 2006. Energetic state and the performance of dawn chorus in silvereyes (Zosterops lateralis). Behav Ecol Sociobiol, 61: 579–587
Bates D., Maechler M., Bolker B., Walker, S. 2015. Fitting linear mixed-effects models using lme4. J Stat Softw, 67: 1–48
Bennett A. F. 1980. The metabolic foundations of vertebrate behavior. BioScience, 30: 452–456
Bian X., Elgar M. A., Peters R. A. 2016. The swaying behavior of Extatosoma tiaratum: motion camouflage in a stick insect? Behav Ecol, 27: 83–92
Brepson L., Voituron Y., Lengagne T. 2013. Condition-dependent ways to manage acoustic signals under energetic constraint in a tree frog. Behav Ecol, 24(2): 488–496
Briffa M., Elwood W. R. 2001. Decision rules, energy metabolism and vigour of hermit-crab fights. Proc R Soc Lond B, 268: 1841–1848
Candolin U. 1999 The relationship between signal quality and physical condition: is sexual signalling honest in the three-spined stickleback? Anim Behav 58: 1261–1267
Chen K. M., Song G. Q., Cheng L. Q. 1996. Zoige county annals. Ethnic Press (95–96 pp)
Christophe L., Alatalo R. V., Siitari H. 2013. Physiological costs enforce the honesty of lek display in the black grouse (Tetrao tetrix). Oecologia, 172: 983–993
Dammhahn, M., Dingemanse, N. J., Niemel?, P. T., Réale D. 2018. Pace-of-life syndromes: a framework for the adaptive integration of behaviour, physiology and life history. Behav Ecol Sociobiol, 72(3): 62
Docherty S., Bishop P. J., Passmore N. I. 1995. Calling behavior and male condition in the frog Hyperolius marmoratus. J Herpetol, 29: 616–618
Doubell M., Grant P. B. C., Esterhuizen N., Bazelet C. S., Addison P., Terblanche J. S. 2017. The metabolic costs of sexual signalling in the chirping katydid Plangia graminea (Serville) (Orthoptera: Tettigoniidae) are context dependent: cumulative costs add up fast. J Exp Biol, 220: 4440–4449
Endler J. A. 1993. Some general comments on the evolution and design of animal communication systems. Philos Trans R Soc Lond B, 340: 215–225
Fleishman, L. J. 1992. The influence of the sensory system and the environment on motion patterns in the visual displays of anoline lizards and other vertebrates. Am Nat, 139: S36–S61
Gibson J. S., Uetz G. W. 2012. Effect of rearing environment and food availability on seismic signalling in male wolf spiders (Araneae: Lycosidae). Anim Behav, 84: 85–92
Halfwerk K., Lea A. M., Guerra M. A., Page R. A., Ryan M. J. 2016. Vocal responses to noise reveal the presence of the Lombard effect in a frog. Behav Ecol, 27(2): 669–676
Hanna D. E. L., Wilson D. R., Blouin-Demers G., Mennill D. J. 2014. Spring peepers Pseudacris crucifer modify their call structure in response to noise. Curr Zool, 60: 438–448
Hedrick T. L. 2008. Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems. Bioinspir Biomim, 3: 1–7
Howard R. D., Young J. R., 1998. Individual variation in male vocal traits and female preferences in Bufo americanus. Anim Behav, 55: 1165–1179
Humfeld S. C. 2013. Condition-dependent signaling and adoption of mating tactics in an amphibian with energetic displays. Behav Ecol, 24(4): 859–870
Kaiser K., Hammers J. L. 2009. The effect of anthropogenic noise on male advertisement call rate in the neotropical treefrog, Dendropsophus triangulum. Behaviour, 146: 1053–1069
Kim T. W., Sakamoto K., Henmi Y., Choe J. C. 2008. To court or not to court: reproductive decisions by male fiddler crabs in response to fluctuating food availability. Behav Ecol Sociobiol, 62: 1139–1147
Kim T. W., Choe J. C. 2003. The effect of food availability on the semilunar courtship rhythm in the fiddler crab Uca lactea (de Haan) (Brachyura: Ocypodidae). Behav Ecol Sociobiol, 54: 210-217
Kotiaho J. S., Alatalo R.V., Mappes J., Nielsen M. G., Parri S., Rivero A. 1998. Energetic costs of size and sexual signalling in a wolf spider. Proc R Soc Lond B Bio, 265: 2203–2209
Kuznetsova A., Brockhoff P. B., Christensen R. H. B. 2016. lmerTest: tests in linear mixed effects models. R package version 2.0-33.https://CRAN. R-project. org/package/lmerTest
Li J. B., Goldberg A. L. 1976. Effects of food deprivation on protein synthesis and degradation in rat skeletal muscles. Am J Physio, 231(2): 441–448
Luther D., Gentry K. 2013. Sources of background noise and their influence on vertebrate acoustic communication. Behaviour, 150: 1045–1068
Mappes J., Alatalo R. V., Kotiaho J. S., Parri S. 1996. Viability costs of condition-dependent sexual male display in a drumming wolf spiders. P Roy Soc B-Biol Sci, 263: 785–789
Marler C. A., Ryan M. J. 1996. Energetic constraints and steroid hormone correlates of male calling behavior in the tungara frog. J Zool Lond, 240: 397–409
Martin S. 2013. Sensory ecology, behaviour, and evolution. UK: Oxford University Press
Mészáros B., Herczeg G., Bajer K., T?r?k J., Molnár O. 2017 Effects of energy and thermoregulation time on physiological state and sexual signal in a lizard. J Exp Zool, 327:570–578
Meuche I., Grafe T. U. 2009. Supplementary feeding affects the breeding behaviour of male European treefrogs (Hyla arborea). BMC Ecol, 9: 1
Mowles S. L., Jennions M., Backwell P. R. Y. 2017 Multimodal communication in courting fiddler crabs reveals male performance capacities. R Soc open sci, 4: 161093
Ord T. J., Peters R. A., Clucas B., Stamps J. A. 2007. Lizards speed up visual displays in noisy motion habitats. Proc Biol Sci, 274: 1057–1062
Peters R. A., Ramos J. A., Hernandez J., Wu Y., Qi Y. 2016. Social context affects tail displays by Phrynocephalus vlangalii lizards from China. Sci Rep, 6: 31573
Peters R. A., Christopher S. E. 2003. Introductory tail-filck of the Jack dragon visual display: signal efficacy depends upon duration. J Exp Biol, 206: 4293–4307
Peters R. A., Hemmi J., Zeil J. 2008. Image motion environments: background noise for movement-based animal signals. J Comp Physiol A., 194: 441–456
Qi Y., Suo L. D. J., Li H., Wang Y. Z. 2011a. An ethogram of the toad-headed lizard Phrynocephalus vlangalii during the breeding season. Asian Herpetol Res, 2: 110–116
Qi Y., Wan H. F., Gu H. J., Wang Y. Z. 2011b. Do display and badges function in establishing the social structure of male toad-headed lizards, Phrynocephalus vlangalii? J Ethol, 29: 381–387
Qi Y., Noble D. W. A., Fu J., Whiting M. J. 2012. Spatial and social organization in a burrow-dwelling lizard (Phrynocephalus vlangalii) from China. PLoS One, 7: e41130
R Development Core Team. 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, Retrieved from
Ritschard M., Brumm H. 2011. Zebra finch song reflects current food availability. Evol Ecol, 26: 801–812
Sally W., Speakman J. R., Slater P. J. B. 2003. The energy cost of song in the canary, Serinus canaria. Anim Behav, 66: 893–902
Scheuber H., Jacot A., Brinkhof M. W. G. 2003 The effect of past condition on a multicomponent sexual signal. Proc R Soc Lond B Bio, 270: 1779–1784
Simon V. B. 2007. Not All signals are equal: male brown anole lizards (Anolis sagrei) selectively decrease pushup frequency following a simulated predatory attack. Ethology, 113: 793–801
Slavík O., Hork? P., Douda K., Velí?ek J., Kolá?ová J., Lepi? P. 2017. Parasite-induced increases in the energy costs of movement of host freshwater fish. Physiol Behav, 171: 127–134
Steinberg D. S., Losos B. J., Schoener T. W., Spiller D. A., Kolbe J. J., Leal M. 2014. Predation-associated modulation of movement-based signals by a Bahamian lizard. Proc Natl Acad Sci USA, 111: 9187–9192
Takeshita F., Murai M., Matsumasa M., Henmi Y. 2018. Multimodal signaling in fiddler crab: waving to attract mates is condition-dependent but other sexual signals are not. Behav Ecol Sociobiol, 72: 140–150
Turbill C., McAllan B. M., Prior S. 2019. Thermal energetics and behaviour of a small, insectivorous marsupial in response to the interacting risks of starvation and predation. Oecologia, 191: 803–815
Vanhooydonck B. H., Damme A. Y. V., Irschick. D. J. 2005. Does dewlap size predict male bite performance in Jamaican Anolis lizards? Funct Ecol, 19: 38–42
Wang X. C., Zhao Z. J., Cao Y., Cui J. G., Tang Y. Z., Chen J. F., 2019. Condition dependence of advertisement calls in male African clawed frogs. J Ethol, 37: 75–81
Wackerhage H., Rennie M. J. 2006. How nutrition and exercise maintain the human musculoskeletal mass. J Anat, 208: 451–458
Wu Y. Y., Fu J. Z., Yue B. S., Qi Y. 2015. An atypical reproductive cycle in a common viviparous Asia Agamid Phrynocephalus vlangalii. Ecol Evol, 5: 5138–5147
Wu Y., Ramos J. A., Qiu X., Peters R. A., Qi Y. 2018. Female–female aggression functions in mate defence in an Asian agamid lizard. Anim Behav, 135: 215–222
Wu P. F., Wang Y. Z., Wang S. G., Zeng T., Guo H. Y., Cai H. X. 2002. The age structure and sex ratio of Phrynocephalus vlangalii (Sauria: Agamidae). J Sichuan Univ (Nat Sci Edition), 39: 1134–1139
Wu P. F. 2003. Phrynocephalus vlangalii population ecology research in Zoige. Master’s thesis. Sichuan University, 20–43 pp
Yue F., Tang X. L., Zhang D. J., Yan X. F., Xin Y., Chen Q. 2012. Body temperature and standard metabolic rate of the female viviparous lizard Eremias multiocellata duration reproduction. Can J Zool, 90: 79–84
Zuk M., Kolluru I. C. 1998. Exploitation of sexual signals by predators and parasitoids. Q Rev Biol, 73: 415–438


Last Update: 2020-09-25