Chen YANG,Songhua TANG,Zhenhua LUO.Distribution Changes of Chinese Skink (Eumeces chinensis) in China: the Impacts of Global Climate Change[J].Asian Herpetological Research(AHR),2020,11(2):132-138.[doi:10.16373/j.cnki.ahr.190058]
Click Copy

Distribution Changes of Chinese Skink (Eumeces chinensis) in China: the Impacts of Global Climate Change
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

2020 VoI.11 No.2
Research Field:
Publishing date:


Distribution Changes of Chinese Skink (Eumeces chinensis) in China: the Impacts of Global Climate Change
Chen YANG1* Songhua TANG2 Zhenhua LUO3
1 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
2 Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
3 Molecular and Behavioral Ecology Research Group, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
climate change MaxEnt prediction species distribution model unendangered species
Repaid global climate changes in temperature and rainfall influence the species distribution and diversity patterns. Chinse skink is a common species with large population and widely distribution in China. To access potential effect of climate changes on the unendangered species, we used the maximum-entropy modeling (MaxEnt) method to estimate the current and future potential distributions of Chinese Skink. Predictions were based on two periods (2050 and 2070), three general circulation models (GCMs: BCC-CSM1-1, HadGEM2-ES, MIROC5), four representative concentration pathways (RCP: 2.6, 4.5, 6.0 and 8.0) and 28 environmental variables including topography, human impact, bio-climate and habitat. We found that the model were better fit with high values in AUC, KAPPA and TSS. The jackknife tests showed that variables of BIO9, BIO14, BIO15, HFI and GDP were relatively higher contributions to the model. Although the size of suitable areas for skink have less effect by future climate change under full and mull dispersal hypothesis, we should still focuse on the effect of human impact and climate changes on the protection and management for Chinese skink due to the variables uncertainty.


Bellard C., Bertelsmeier C., Leadley P., Thuiller W., Courchamp F. 2012. Impacts of climate change on the future of biodiversity. Ecol Lett, 15(4): 365–377
Burnham K., Anderson D. 2002. Model selection and multimodel inference: a practical information-theoretic approach. Springer Verlag
Davis A. J., Jenkinson L. S., Lawton J. H., Shorrocks B., Wood S. 1998. Making mistakes when predicting shifts in species range in response to global warming. Nature, 391(6669): 783–786
Elith J., Graham C. H., Anderson R. P., Dud?k M., Ferrier S., Guisan A., Hijmans R. J., Huettmann F., Leathwick J. R., Lehmann A. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2): 129–151
Fielding A. H., Bell J. F. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv, 24(01): 38–49
Freeman E. A., Moisen G. 2008. PresenceAbsence: An R package for presence absence analysis. Journal of Statistical Software, 23(11): 1–31
Hannah L., Midgley G., Millar D. 2002. Climate change‐integrated conservation strategies. Glob Ecol Biogeogr, 11(6): 485–495
Houghton J., Ding Y., Griggs D., Noguer M., van der Linden P., Dai X., Maskell K., Johnson C. 2001. IPCC 2001: Climate Change 2001. The Climate change Contribution ofWorking Group I to the Third Assessment Report of the Intergovemmental Panel on Climate Change: 156–159
Hu J., Jiang Z. 2010. Predicting the potential distribution of the endangered Przewalski’s gazelle. J Zool, 282(1): 54–63
Hu J., Jiang Z. 2011. Climate change hastens the conservation urgency of an endangered ungulate. PLoS ONE, 6(8): e22873
Ji X., Zhang Z. 2000. Effects of thermal and hydric environments on incubating eggs, hatching success, and hatchling traits in the Chinese skink (Eumeces chinensis). Acta Zool Sin, 47(3): 256–265
Ji X., Zheng X., Xu Y., Sun R. 1995. Some aspects of thermal biology of the skink (Eumeces chinensis). Acta Zool Sin, 41(3): 268–274
Keith D. A., Ak?akaya H. R., Thuiller W., Midgley G. F., Pearson R. G., Phillips S. J., Regan H. M., Araújo M. B., Rebelo T. G. 2008. Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models. Biol Lett, 4(5): 560–563
Levinsky I., Skov F., Svenning J.-C., Rahbek C. 2007. Potential impacts of climate change on the distributions and diversity patterns of European mammals. Biodivers Conserv, 16(13): 3803–3816
Li R., Xu M., Wong M. H. G., Qiu S., Sheng Q., Li X., Song Z. 2014. Climate change‐induced decline in bamboo habitats and species diversity: implications for giant panda conservation. Divers Distrib, 21(4): 379–391
Lin Z. H., Qu Y. F., Ji X. 2006. Energetic and locomotor costs of tail loss in the Chinese skink, Eumeces chinensis. Comp Biochem Physiol A Mol Integr Physiol, 143(4): 508–513
Lin Z., Ji X. 1999. Food habits, sexual dimorphism and female reproduction of the skink (Eumeces chinensis) from a Lishui population in Zhejiang. Acta Ecol Sin, 20(2): 304–310
Luo Z., Zhou S., Yu W., Yu H., Yang J., Tian Y., Zhao M., Wu H. 2014. Impacts of climate change on the distribution of Sichuan snub‐nosed monkeys (Rhinopithecus roxellana) in Shennongjia area, China. Am J Primatol, 77(2): 135–151
Lyu N., Sun Y. H. 2014. Predicting Threat of Climate Change to the Chinese Grouse on the Qinghai-Tibet Plateau. Wildl Biol, 20(2): 73–82
Morueta-Holme N., Fl?jgaard C., Svenning J. C. 2010. Climate change risks and conservation implications for a threatened small-range mammal species. PLoS ONE, 5(4): e10360
Pan Z. C., Ji X., Lu H. L., Ma X. M. 2005. Influence of food type on specific dynamic action of the Chinese skink Eumeces chinensis. Comp Biochem Physiol A Mol Integr Physiol, 140(1): 151–155
Parmesan C., Ryrholm N., Stefanescu C., Hill J. K., Thomas C. D., Descimon H., Huntley B., Kaila L., Kullberg J., Tammaru T. 1999. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature, 399(6736): 579–583
Pearson R. G., Dawson T. P. 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr, 12(5): 361–371
Pearson R. G., Raxworthy C. J., Nakamura M., Townsend Peterson A. 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr, 34(1): 102–117
Penman T. D., Pike D. A., Webb J. K., Shine R. 2010. Predicting the impact of climate change on Australia’s most endangered snake, Hoplocephalus bungaroides. Divers Distrib, 16(1): 109–118
Peterson A. T. 2006. Uses and requirements of ecological niche models and related distributional models. Biodivers Inform, 3: 59–72
Phillips S. J., Anderson R. P., Schapire R. E. 2006. Maximum entropy modeling of species geographic distributions. Ecol Modell, 190(3): 231–259
Preston K. L., Rotenberry J. T., Redak R. A., Allen M. F. 2008. Habitat shifts of endangered species under altered climate conditions: importance of biotic interactions. Glob Change Biol, 14(11): 2501–2515
Stocker T. F., Qin D., Plattner G. K., Tignor M., Allen S. K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P. M. 2013. Climate change 2013: The physical science basis. Intergovernmental Panel on Climate Change, Working Group I Contribution to the IPCC Fifth Assessment Report (AR5)(Cambridge Univ Press, New York)
Thomas C. D., Cameron A., Green R. E., Bakkenes M., Beaumont L. J., Collingham Y. C., Erasmus B. F., De Siqueira M. F., Grainger A., Hannah L. 2004. Extinction risk from climate change. Nature, 427(6970): 145–148
Thuiller W., Broennimann O., Hughes G., Alkemade J. R. M., Midgley G. F., Corsi F. 2006. Vulnerability of African mammals to anthropogenic climate change under conservative land transformation assumptions. Glob Change Biol, 12(3): 424–440


Last Update: 2020-06-25