Xinghan LI,Chenxu WANG,Guoshuai TANG,et al.Does Light Exposure during Embryonic Development Affect Cognitive Behavior in a Lizard?[J].Asian Herpetological Research(AHR),2020,11(1):56-62.[doi:10.16373/j.cnki.ahr.190004]
Click Copy

Does Light Exposure during Embryonic Development Affect Cognitive Behavior in a Lizard?
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

Issue:
2020 VoI.11 No.1
Page:
56-62
Research Field:
Publishing date:
2020-03-26

Info

Title:
Does Light Exposure during Embryonic Development Affect Cognitive Behavior in a Lizard?
Author(s):
Xinghan LI13 Chenxu WANG12 Guoshuai TANG12 Shuran LI3 Liang MA1 Baojun SUN1* and Yongpu ZHANG3*
1 Key Laboratory of Animal Ecology and Conservational Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, Zhejiang, China
Keywords:
embryonic development light vision cognitive ability Eremias argus
PACS:
-
DOI:
10.16373/j.cnki.ahr.190004
Abstract:
Light is essential for embryonic development in many oviparous animals including fish, amphibians, and birds. However, light may be harmful for reptile embryos developing underground where they are in complete darkness and beneath thin eggshells. Nonetheless, how embryonic light conditions affect reptile development and offspring remains largely unknown. Here we incubated eggs in dark and light conditions to determine the effects of light exposure on embryonic development and offspring visual ability, spatial cognitive ability and growth in a lacertid lizard, Eremias argus. Our experiments demonstrated that light stimulation shortened incubation duration of eggs, but did not affect hatching success, offspring size, visual ability or survival. More interestingly, light exposure during incubation decreased spatial cognitive ability and post-hatching growth of offspring. On the basis of negative effects on offspring growth rates, our study indicates that in squamate reptiles with thin eggshells, light exposure in early development has negative effects on offspring cognitive ability.

References:

Amiel J. J., Shine R. 2012. Hotter nests produce smarter young lizards. Biol Lett, 8: 372–374
Andrew R. J., Osorio D., Budaev S. 2009. Light during embryonic development modulates patterns of lateralization strongly and similarly in both zebrafish and chick. Philos Trans R Soc Lond B Biol Sci, 364: 983–989
Andrew R. J., Tommasi L., Ford N. 2000. Motor control by vision and the evolution of cerebral lateralization. Brain Lang, 73: 220–235
Barlow P., Puissant F., Vanderzwalmen P., Vandromme J., Trigaux P. 1992. Invitro fertilization, development, and implantation after exposure of mature mouse oocytes to visible-light. Mol Reprod Dev, 33: 297–302
Beazley L. D., Rodger J., Chen P., Tee L. B. G., Stirling R. V. 2003. Training on a visual task improves the outcome of optic nerve regeneration. J Neurotrauma, 20: 1263–1270
Bianki V. L., Snarsky S. I. 1987. The lateralization of hemispheric control over pain-induced vocalizations in rats. Zh Vyssh Nerv Deiat Im IP Pavlova, 38: 939–944
Bonati B., Csermely D., López P., Martín J. 2010. Lateralization in the escape behaviour of the common wall lizard (Podarcis muralis). Behav Brain Res, 207: 1–6.
Bonati B., Csermely, D. 2013. Lateralization in Lizards: Evidence of Presence in Several Contexts. Behavioral Lateralization in Vertebrates. Springer Berlin Heidelberg.
Carazo P, Noble D. W., Chandrasoma D., Whiting M. J. 2014. Sex and boldness explain individual differences in spatial learning in a lizard. Proc R Soc Lond B Biol Sci, 281: 20133275.
Cooper C. B., Voss M. A., Ardia D. R., Austin S. H., Robinson W. D. 2011. Light increases the rate of embryonic development: implications for latitudinal trends in incubation period. Funct Ecol, 25: 769–776
Cooper Jr. W. E. 2009. Variation in escape behavior among individuals of the striped plateau lizard sceloporus virgatus may reflect differences in boldness. J Herpetol, 43: 495–502
Dadda M., Bisazza A. 2012. Prenatal light exposure affects development of behavioural lateralization in a livebearing fish. Behav Processes, 91: 115–118
Deeming D. C. 2002. Avian incubation: behaviour, environment, and evolution. Oxford Ornithology Series, Oxford, UK
Deeming D. C. 2004. Reptilian incubation: environment, evolution and behaviour. Nottingham University Press, Nottingham, UK
Du W. G., Shine R. 2015. The behavioural and physiological strategies of bird and reptile embryos in response to unpredictable variation in nest temperature. Biol Rev, 90(1): 19–30.
Horiguchi T., Ito C., Numata H. 2009. Regulation of embryogenesis by light and its ecological significance in the Asian tadpole shrimp Triops granarius. Zoolog Sci, 26: 483–490.
Howe R. W. 1967. Temperature effects on embryonic development in insects. Annu Rev Entomol, 12: 15–42
Itoh M. T., Sumi Y. 2000. Circadian clock controlling egg hatching in the cricket (Gryllus bimaculatus). J Biol Rhythms, 15: 241–245
Jezierska B., Lugowska K., Witeska M. 2009. The effects of heavy metals on embryonic development of fish (a review). Fish Physiol Biochem, 35: 625–640
Lemaire V., Koehl M., Le Moal M., Abrous D. N. 2000. Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc Natl Acad Sci USA, 97: 11032–11037
Licht L. E. 2003. Shedding light on ultraviolet radiation and amphibian embryos. Bioscience, 53: 551–561
Noble D. W. A., Stenhouse V., Schwanz L. E. 2018. Developmental temperatures and phenotypic plasticity in reptiles: a systematic review and meta-analysis. Biol Rev, 93(1): 72–97
Oh S. J., Gong S. P., Lee S. T., Lee E. J., Lim J. M. 2007. Light intensity and wavelength during embryo manipulation are important factors for maintaining viability of preimplantation embryos in vitro. Fertil Steril, 88: 1150–1157
Paulissen M. A. 2008. Spatial learning in the little brown skink, Scincella lateralis: the importance of experience. Anim Behav, 76: 135–141
Prinzinger R., Hinninger C. 1992. (Endogenous?) diurnal rhythm in the energy-metabolism of pigeon embryos. Naturwissenschaften, 79: 278–279
Robins A., Chen P., Beazley L.D., Dunlop S.A. 2005. Lateralized predatory responses in the ornate dragon lizard (Ctenophorus ornatus). Neuroreport, 16: 849–852
Rogers L. J. 1982. Light experience and asymmetry of brain function in chickens. Nature, 297(5863): 223–225
Rogers L. J., Zucca P., Vallortigara G. 2004. Advantages of having a lateralized brain. Proc R Soc Lond B Biol Sci, 271: S420–S422
Selby C. P., Sancar A. 2006. A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase activity. Proc Natl Acad Sci USA, 103: 17696–17700
Seo M. R., Lee M. J., Heo J. H., Lee Y. I., Kim Y. 2007. G protein beta gamma subunits augment UVB-induced apoptosis by stimulating the release of soluble heparin-binding epidermal growth factor from human keratinocytes. J Biol Chem, 282: 24720–24730
Shafey T. M. 2004. Effect of lighted incubation on embryonic growth and hatchability performance of two strains of layer breeder eggs. Br Poult Sci, 45: 223–229
Sleigh M. J., Birchard G. F. 2001. Amount of prenatal visual stimulation alters incubation times and postnatal preferences in leopard geckos (Eublepharis macularius). J Comp Psychol, 115: 233–240
Sol D., Bacher S., Reader S. M., Lefebvre L. 2008. Brain size predicts the success of mammal species introduced into novel environments. Am Nat, 172: S63–S71
Squirrell J. M., Wokosin D. L., White J. G., Bavister B. D. 1999. Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nat Biotechnol, 17: 763–767
Sun B. J., Ma L., Li S. R., Williams, C. M., Wang Y. Hao X. Du W. G. 2018. Phenology and the physiological niche are co-adapted in a desert dwelling lizard.?Func Ecol, 32: 1520–2530
Sun B. J., Wang T. T., Pike D. A., Liang L., Du W. G. 2014. Embryonic oxygen enhances learning ability in hatchling lizards. Front Zool, 11: 21
Takenaka M., Horiuchi T., Yanagimachi R. 2007. Effects of light on development of mammalian zygotes. Proc Natl Acad Sci USA, 104: 14289–14293
Umaoka Y., Noda Y., Nakayama T., Narimoto K., Mori T. 1992. Effect of visual light on in vitro embryonic-development in the hamster. Theriogenology, 38: 1043–1054
Villamizar N., Blanco-Vives B., Migaud H., Davie A., Carboni S. 2011. Effects of light during early larval development of some aquacultured teleosts: A review. Aquaculture, 315: 86–94
Wraith J., Przeslawski R., Davis A. R. 2006. UV-induced mortality in encapsulated intertidal embryos: Are mycosporine-like amino acids an effective sunscreen? J Chem Ecol, 32: 993–1004
Yamauchi Y., Yanagimachi R., Horiuchi T. 2002. Full-term development of golden hamster oocytes following intracytoplasmic sperm head injection. Biol Reprod, 67: 534–539
Yamamoto Y., Stock D. W., Jeffery W. R. 2004. Hedgehog signalling controls eye degeneration in blind cavefish. Nature, 431: 844–847
Zappia J. V., Rogers L. J. 1983. Light experience during development affects asymmetry of forebrain function in chickens. Dev Brain Res, 11(1): 93–106
Zhang Y. P., Li S. R., Ping J., Li S. W., Zhou H. B. Sun B. J., Du W. G. 2016. The effects of light exposure during incubation on embryonic development and hatchling traits in lizards. Sci Rep, 6: 38527
Zhao K. T. 1999. Lacertidae. in: Zhao EM and Zhou KY, eds. Fauna Sinica, Reptilia (Squamata: Lacertilia). Science Press, Beijing, pp 219–242

Memo

Memo:
-
Last Update: 2020-03-27